Triterpenes, steroids and lichexantone from Macrolobium acaciifolium leaves and branches hexane extracts and antibacterial activity
Triterpenos, esteroides e lichexantona isolados dos extratos hexânicos de folhas e galhos de Macrolobium acaciifolium e atividade antibacteriana
Palavras-chave:
Lupeol, 24-methylenecycloartanol, β-Amyrin, Friedelin, LichexanthoneResumo
Macrolobium acaciifolium belongs to Fabaceae family and only few phytochemical studies were carried out in the scientific literature consulted. The objective of this work was to isolate and identify the secondary metabolites from M. acaciifolium leaves and branches hexane extracts, in addition to evaluate the antibacterial potential of the extracts. The plant materials were dried and extracted with hexane, then methanol and water. The hexane extracts showed the presence of terpenoids (including steroids) by thin layer chromatography and nuclear magnetic resonance analysis. The phytochemical fractionation allowed to isolate the triterpenes: lupeol, β-amyrin and 24-methylenecycloartanol from hexane leaves extract. The mixture of the triterpene friedelin and the xanthone 1-hydroxy-3,6-dimethoxy-8-methyl-9h-xanthen-9-one (lichexanthone) were isolated from branches hexane extract. In both extracts, the mixture of the steroids β-sitosterol and stigmasterol were also isolated. The leaves hexane extract showed to be toxic to Aeromonas hydrophila with 87% growth inhibition at a concentration of 1000 µg/mL. This is the first description of the isolation of these substances in Macrolobium acaciifolium and the antibacterial activity.
Downloads
Referências
ANTIMICROBIAL RESISTENCE COLLABORATORS. Global burden of bacterial antimicrobial resistence in 2019: a systematic analysis. Lancet, v. 399, n. 10325, p. 629-655, 2022. DOI 10.1016/S0140-6736(21)02724-0
ABDEL-RAOUF, N.; AL-ENAZI, N. M.; AL-HOMAIDAN, A. A.; IBRAHEEM, I. B. M.; AL-OTHMAN, M. R.; HATAMLEH, A. A. Antibacterial β-amyrin isolated from Laurencia microcladia. Arabian J. Chem., v. 8, p. 32–37, 2015. DOI: 10.1016/j.arabjc.2013.09.033
ALEXANDRE, A. S.; FACHIN-ESPINAR, M. T.; NUNEZ, C. V. Triterpenos, esteroides e fenólico isolados de Minquartia guianensis Aubl (Coulaceae) e atividade antibacteriana. Concilium, v. 23, n. 3, 2023. DOI 10.53660/CLM-920-23B61
ASSAHIRA, C.; PIEDADE, M. T. F.; TRUMBORE, S. E.; WITTMANN, F.; CINTRA, B. B. L.; BATISTA, E. S.; RESENDE, A. F.; SCHÖNGART, J. Tree mortality of a flood-adapted species in response of a hydrographic changes by an Amazonian river dam. For. Ecol. and Manage., 369, p. 113, 2017. DOI 10.1016/j.foreco.2017.04.016
BARBOSA, A. P.; PALMEIRA, R. C. F.; NASCIMENTO, C. S.; FEITOZA, D. S.; CUNHA, M. S. C. Leguminosas florestais da Amazônia Central. I. Prospecção das classes de compostos presentes na casca de espécies arbóreas. Revista Fitos, 1, p, 46, 2006.
BEHRENS, M. D.; TAPPIN, M. R. R.; FAVORETO, R.; SILVA, V. P.; NAKAMURA, M. J.; BARBOSA, A. P.; SOUSA, L. A. SIANI, A. C. Estudo prospectivo de Leguminosas da Amazônia Central. II. Composição química dos óleos das sementes. Revista Fitos, 1, p. 58, 2006.
CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard-Tenth Edition. M07 A10. v. 35, p. 1-87, 2015.
CAI, C.; MA. J.; HAN, C.; JIN, Y.; ZHAO, G.; HE, X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep, v. 9. 7418, 2019. DOI 10.1038/s41598-019-43886-0.
CALDERÓN-BALCÁZAR, A.; CÁRDENAZ, C. D.; DÍAZ-VASCO, O.; FANDIÑO, E.; MÁRQUEZ, T.; PIZANO, C. Biomass and carbon stocks of four vegetation types in the Llanos Orientales of Colombia (Mapiripán, Meta). Trees, Forests and People, 12, 100380, 2023. DOI 10.1016/j.tfp.2023.100380
CAO, L.; JIN, H.; LIANG, Q.; YANG, H.; LI, S.; LIU, Z.; YUAN, Z. A new anti-tumor cytotoxic triterpene from Ganoderma lucidum. Nat. Prod. Res., v. 36, n. 16, p. 4125-4131, 2021. DOI 10.1080/14786419.2021.1976175
CINTRA, B. B. L.; GLOOR, M.; BOOM, A.; SHÖNGART, J.; BAKER, J. C. A.; CRUZ, F. W.; CLERICI, S.; BRIENEN, R. J. W. Tree-ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40 years. Clim. Dyn., 59, p. 1401, 2022. DOI 10.1007/s00382-021-06046-7.
DARSHANI, P.; SARMA, S. S.; SRIVASTAMA, A. K.; BAISHYA, R.; KUMAR, D. Anti-viral triterpenes: a review. Phytochem. Rev., v. 21, p. 1761-1842, 2022. DOI 10.1007/s11101-022-09808-1
DE-ALMEIDA, S. C. X.; DA-SILVA, Â. C. F.; SOUSA, N. R. T.; AMORIM, I. H. F.; LEITE, B. G.; NEVES, K. R. T.; COSTA, J. M. G.; FELIPE, C. F. B.; de-BARROS, VIANA, G. S. Antinociceptive and anti-inflammatory activities of a triterpene-rich fraction from Himatanthus drasticus. Braz. J. Med. Biol. Res., v. 52, n. 5, e7798, p. 1-12. 2019. DOI 10.1590/1414-431x20197798
DÍAZ, A. B.; VERA, J. R.; COTE, V.; BRUNO-COLMENÁREZ, J.; DELGADO, G. D. NMR elucidation and Crystal structure analysis of 1-hydrohy-3,6-dimethoxy-8-methyl-9h-xanthen-9-one (lichexanthone) isolated from Vismia baccifera (Guttiferae). Bol. Latinoam. Caribe Plant. Med. Aromat., v. 9, n. 6, p. 470-474, 2010.
EL-KADER, A. M. A.; MAHMOUD, B. K.; HAJJAR, D.; MOHAMED, M. F. A.; HAYALLAH, A. M.; ABDELMOHSEN, U. R. Antiproliferative activity of a new pentacyclic triterpene and a saponin from Gladiolus sagetum Ker-Gawl corms supported by molecular docking study. RSC Adv., v. 10, n. p. 22730-22741, 2020. DOI 10.1039/d0ra02775h
FÉLIX-DA-SILVA, M. M.; BASTOS, M. N. C.; GURGEL, E. S. C. O gênero Macrolobium Schreb. (Leguminosae) no estado do Amapá, Brasil. Iheringia, Ser. Bot., v. 72, n. 2, p. 267-275, 2017.
FERRAZ, C. M. S.; SANTOS, A. Q.; SANTOS, M. J.; SILVA, V. R.; SANTOS, L. S.; SOARES, M. B. P.; BEZERRA, D. P.; MACEDO, G. E. L.; PAULA, V. F. QUEIROZ, F. V. Chemical composition and antioxidant, antibacterial and antiproliferative activities of Macrolobium latifolium Vogel (Fabaceae) stem bark. S. Afr. J. Bot., 140, p. 210, 2021. DOI 10.1016/j.sajb.2021.04.013
GAN, L.; CHEN, S.; JENSEN, G. J. Molecular organization of gram-negative peptidoglycan. Proc. Natl. Acad. Sci. U. S. A., v. 105, n. 48, p. 18953-18957, 2008. DOI 10.1073/pnas.0808035105
HAYHURST, E. J.; KAILAS, L.; HOBBS, J. K.; FOSTER, S. J. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A., v. 105, n. 38, p. 14603-14608, 2008. DOI 10.1073/pnas.0804138105
KLIPIMO, J. J.; KOORBANALLY, N. A.; CHENIA, H. Triterpenoids from Vernonia auriculifera Hiern exhibit antimicrobial activity. Afr. J. Pharm. Phamacol., v. 5, n. 8. p. 1150-1156, 2011. DOI 10.5897/AJPP11.183
LOZANO, S. A.; SOUSA, A. B. B.; SOUZA, J. C.; SILVA, D. R.; SALAZAR, M. G. M.; HALICKI, P. C. B.; RAMOS, D. F.; SILVA, P. E. A.; NUNEZ, C. V. Duroia saccifera: in vitro germination, friable calli and identification of β-sitosterol and stigmasterol from the active extract against Mycobacterium tuberculosis. Rodriguesia, V. 71, e01092019, 2020. DOI 10.1590/2175-7860202071054
LPWG. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, v. 66, n. 1, p. 44-77, 2017. DOI 10.12705/661.3
MATHABE, M. C.; HUSSEIN, A. A.; NIKOLOVA, R. V.; BASSON, A. E.; MEYER, J. J. M.; LALL, N. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J. Ethnopharmacol., v. 116, p. 194-197, 2008. DOI 10.1016/j.jep.2007.11.017
MIETHKE, M.; PIERONI, M.; WEBER, T. et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem., v. 5, p. 726-749, 2021. DOI 10.1038/s41570-021-00313-1
MORIM, M. P; GURGEL, E. S. C.; Macrolobium in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: https://floradobrasil.jbrj.gov.br/FB23066 Acessado em: 14 de dezembro de 2022.
MUHIT, M. A.; UMEHARA, K.; SHARMIN, N. NOGUSHI, H. Cycloartane and stigmastane type triterpenoides from Photos scandens inhibit estradiol (E2) induced proliferations in breast cancer cells. Dhaka Univ. J. Pharm. Sci., v. 8, n. 1, p. 93-102, 2019. DOI 10.3329/dujps.v18i1.41896
NASCIMENTO, B. O.; NETO, O. C. S.; TEODORO, M. T. F.; SILVA, E. O.; GUEDES, M. L. S.; DAVID, J. M. Macrolobin: A new C-glycoside chromone from Macrolobium latifolium and its anticholinesterase and antimicrobial activities. Phytochem. Lett., 39, p. 124, 2020. DOI 10.1016/j.phytol.2020.08.002
NEWMAN, D.; CRAGG, G. M. Natural products as source of a new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., v. 83, p. 770-803, 2020. DOI 10.1021/acs.jnatprod.9b01285
PANCU. F. D.; SCURTU, A.; MACASOI, I. G.; MARTI, D.; MIOC, M.; SOICA, C.; CORICOVAC, D.; HORHAT, D.; POENARU, M.; DEHELEAN, C. Antibiotics: conventional therapy and natural compounds with bacterial activity – A pharmaco-toxicological screening. Antibiotcs, v. 10, n. 4, p. 1-35, 2021. DOI 10.3390/antibiotics10040401
PEDROZA, L. S.; SALAZAR, M. G. M.; OSORIO, M. I. C.; FACHIN-ESPINAR, M. T.; PAULA, R. C.; NASCIMENTO, M. F. A.; OLIVEIRA, A. B.; NUNEZ, C. V. Estudo químico e avaliação da atividade antimalárica dos galhos de Piranhea trifoliata. Rev. Fitos, v. 14, n. 4, p. 476-491, 2020. DOI 10.32712/2446-4775.2020.905
RAGOZONI, A. A.; VASCONCELOS, M. A. L.; GALVÃO, D. F.; CUNHA, N. L.; NICOLELLA, H. D.; JANUÁRIO, A. H.; PAULETTI, P. M.; SILVA, M. L. A.; TABARES, D. C.; MARTINS, C. H. G.; CUNHA, W. R. Antimicrobial activity of triterpene acids against phytopathogens. Braz. J. Dev., v. 7, n. 3, p. 27870-27881, 2021. DOI 10.34117/bjdv7n3-478
SANTOS, S. R.; ALMEIDA, M. C.; WITTMANN, F. Biometria e germinação de sementes de Macrolobium acaciifolium (Benth.) Benth. De várzia e igapó da Amazônia Central. Iheringia, Ser. Bot., 75, e2020004, 2020. DOI 10.21826/2446-82312020v75e2020004
SCHÖNGART, J.; PIEDADE, M. T. F.; WITTMANN, F.; JUNK, W. J.; WORBS, M. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia, 145, p. 454, 2005. DOI 10.1007/s00442-005-0147-8
SOARES, A. C. F.; MAROS, P. M.; SILVA, K. F.; MARTINS, C. H. G.; VENEZIANEM R. C. S.; AMBRÓSIO, S. R.; DIAS, H. J.; SANTOS, R. A.; HELENO, V. C. G.; Antimicrobial potential of natural and semi-synthetic ent-kaurane and ent-piramane diterpenes against clinically isolated gram-positive multidrug-resistant bacteria. J. Braz. Chem. Soc., v. 30, n. 2, p. 333-341, 2019. DOI 10.21577/0103-5053.20180182
SHAI, L. J.; MCGAW, L. J.; ADEROGBA, M. A.; MDEE, L. K.; ELOFF, J. N. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentada (Burm.f) C.A. Sm. leaves. J. Ethnopharmacol., v. 119, p. 238-244, 2008. DOI 10.1016/j.jep.2008.06.036
SHAVANOV, M. V. The role of food crops within the Poaceae and Fabaceae families as nutritional plants. IOP Conf. Ser.: Earth Environ. Sci., 624, 012111, 2021. DOI 10.1088/1755-1315/624/1/012111
TOUANI, F. K.; SEUKEP, A. J.; DJEUSSI, D. E.; FANKAM, A. G.; NOUMEDEM, J. A.; KUETE, V. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement. Altern. Med., v. 14, n. 258, 2014. DOI 10.1186/1472-6882-14-258
VAIČIULYTĖ, V.; LOŽIENĖ, K.; ŠVEDIENĖ, J.; RAUDONIENĖ, V.; PAŠKEVIČIUS, A. α-Terpinyl acetate: occurrence in essential oils bearing Thymus pulegioides, phytotoxicity, and antimicrobial effects. Molecules, v. 26, n. 1065, 2021. DOI 10.3390/molecules26041065
WFO (2022): Macrolobium Schreb. Disponível em: http://www.worldfloraonline.org/taxon/wfo-4000022724. Acessado em: 24 de março de 2023.
ZHENG, Y.; HUANG, W.; YOO, J.; EBERSOLE, J. L.; HUANG, C. B. Antibacterial compounds from Siraitia grosvenorii leaves. Nat. Prod. Res., v. 25, n. 9, p. 890-897, 2011. DOI 10.1080/14786419.2010.490212