Standardization of reference values of hepatic and renal biochemical markers in rats (Rattus novergicus) Wistar lineage
Padronização dos valores de referência de marcadores bioquímicos hepáticos e renais de ratos (Rattus novergicus) linhagem Wistar
Palavras-chave:
Bioquímica ratos valores de referênciaResumo
The biochemical parameters of laboratory animals may vary between different lineages and strains of a given species, being influenced by the microenvironment and macroenvironment of the vivarium for breeding and maintenance, as well as particularities of the method and commercial kit used in the analysis. This study aimed to determine the reference values for the hepatic and renal parameters of Unib-line Wistar rats. Forty healthy male Wistar rats were studied, weighing an average of 200 to 300g, from the Laboratory Animal Center of Federal Fluminense University. Quantitative biochemical analysis of the liver profile (AST, ALT, alkaline phosphatase, GT gamma, total proteins, albumin, total bilirubin, and direct bilirubin) and renal markers (urea and creatinine) was performed. The research data established liver and kidney analyte values that were compared with those described in the literature. From the standardization of reference values, it will be possible to optimize the time of experiments with Wistar rats as well as to reduce the number of animals used in the research.
Downloads
Referências
ABDEEN, A. et al. Protective effect of cinnamon against acetaminophen-mediated cellular damage and apoptosis in renal tissue. Environmental Science and Pollution Research, v. 26, n. 1, p. 240–249, 3 nov. 2018. https://pubmed.ncbi.nlm.nih.gov/30392171/
ABDULKHALEQ, F. et al. Antioxidative stress effects of vitamins C, E, and B12, and their combination can protect the liver against acetaminophen-induced hepatotoxicity in rats. Drug Design, Development and Therapy, v. Volume 12, p. 3525–3533, out. 2018. https://pubmed.ncbi.nlm.nih.gov/30425454/
ABDULRAZZAQ, A. M. et al. Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. Medicina, v. 55, n. 5, 21 maio 2019. https://pubmed.ncbi.nlm.nih.gov/31117289/
AHMAD, S. T. et al. Hesperidin alleviates acetaminophen induced toxicity in wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicology Letters, v. 208, n. 2, p. 149–161, jan. 2012. https://pubmed.ncbi.nlm.nih.gov/22093918
AHMED, O. M. et al. The Preventive Effects and the Mechanisms of Action of Navel Orange Peel Hydroethanolic Extract, Naringin, and Naringenin in N-Acetyl-p-aminophenol-Induced Liver Injury in Wistar Rats. Oxidative Medicine and Cellular Longevity, v. 2019, p. 1–19, 26 mar. 2019. https://pubmed.ncbi.nlm.nih.gov/31049130
AHMED, Z. et al. Liver function tests in identifying patients with liver disease. Clinical and Experimental Gastroenterology, v. Volume 11, p. 301–307, ago. 2018. https://pubmed.ncbi.nlm.nih.gov/30197529/
AMACHER, D. E. Serum Transaminase Elevations as Indicators of Hepatic Injury Following the Administration of Drugs. Regulatory Toxicology and Pharmacology, v. 27, n. 2, p. 119–130, abr. 1998. https://pubmed.ncbi.nlm.nih.gov/9671567/
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.NBR ISO/IEC 17025: Requisitos gerais sobre a competência dos laboratórios de ensaio e calibração. Rio de Janeiro: ABNT; 2005.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.NBR ISO/IEC 17043: Avaliação de conformidade - Requisitos gerais para Ensaios de Proficiência. Rio de Janeiro: ABNT; 2011.
AZARMEHR, N. et al. Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats. Heliyon, v. 5, n. 7, p. e02072, jul. 2019. https://pubmed.ncbi.nlm.nih.gov/31334381/
BAUM, N.; DICHOSO, C. C.; CARLTON, C. EUGENE. Blood urea nitrogen and serum creatinine. Urology, v. 5, n. 5, p. 583–588, maio 1975. https://pubmed.ncbi.nlm.nih.gov/1093306/
BONELLA, A. E. Animais em laboratórios e a lei Arouca. Scientiae Studia, v. 7, n. 3, p. 507–514, 2009.
BRANCO, A. C. DA S. C. et al. parâmetros bioquímicos e hematológicos de ratos Wistar e camundongos Swiss do biotério Professor Thomas George. Revista Brasileira de Ciências da Saúde, v. 15, n. 2, p. 209–214, 17 out. 2011.
Clinical and Laboratory Standards Institute. How to define and determine reference intervals in the clinical laboratory. Document C 28-A2; 2000.
DE ALMEIDA, K. C. et al. Panorama atual do modelo de indução da hepatotoxicidade por paracetamol para estudos de hepatoproteção em ratos: Scoping review / Current overview of the model of induction of hepatotoxicity by paracetamol for studies of hepatoprotection in rats: Scoping review. Brazilian Journal of Development, v. 8, n. 2, p. 12529–12558, 17 fev. 2022.
EL-BOSHY, M. E. et al. The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environmental Science and Pollution Research, v. 26, n. 22, p. 22736–22746, 6 jun. 2019. https://pubmed.ncbi.nlm.nih.gov/31172438/
FRIEDMAN, L. S. Diseases of the liver, seventh edition. Edited by L. Schiff and E. R. Schiff, 1,516 pp. Philadelphia: J.B. Lippincott, 1993. $195. Hepatology, v. 19, n. 3, p. 797–798, mar. 1994.
HUSSAIN, S. et al. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicology Reports, v. 7, p. 1296–1304, 2020. https://pubmed.ncbi.nlm.nih.gov/33024703/
IPL, Advantages And Disadvantages Of Animal Experimentation, 2021| ipl.org acesso em 18 de abril de 2022
LIMA, C. M. et al. Valores de referência hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério da Universidade Tiradentes. Scientia Plena, v. 10, n. 3, 7 abr. 2014.
LUM, G.; GAMBINO, S. R. Serum gamma-glutamyl transpeptidase activity as an indicator of disease of liver, pancreas, or bone. Clinical Chemistry, v. 18, n. 4, p. 358–362, 1 abr. 1972. https://pubmed.ncbi.nlm.nih.gov/5012259/
MAHALDAR, K. et al. Antioxidant and hepatoprotective activity of Piper retrofractum against Paracetamol-induced hepatotoxicity in Sprague-Dawley rat. Natural Product Research, v. 34, n. 22, p. 3219–3225, 19 jan. 2019. https://pubmed.ncbi.nlm.nih.gov/30663362/
MATTARAIA, V. G. DE M.; MOURA, A. S. A. M. T. Produtividade de ratos Wistar em diferentes sistemas de acasalamento. Ciência Rural, v. 42, n. 8, p. 1490–1496, ago. 2012.
MAZER, M.; PERRONE, J. Acetaminophen-induced nephrotoxicity: Pathophysiology, clinical manifestations, and management. Journal of Medical Toxicology, v. 4, n. 1, p. 2–6, mar. 2008. https://pubmed.ncbi.nlm.nih.gov/18338302/
MELO, M. G. D. et al. Valores de referência hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério central da Universidade Federal de Sergipe. Scientia Plena, v. 8, n. 9, 2012.
MOHAMMADI, A. et al. Chrysin Effect in Prevention of Acetaminophen-Induced Hepatotoxicity in Rat. Chemical Research in Toxicology, v. 32, n. 11, p. 2329–2337, 18 out. 2019. https://pubmed.ncbi.nlm.nih.gov/31625388/
OSOEGAWA, K. BAC Resources for the Rat Genome Project. Genome Research, v. 14, n. 4, p. 780–785, 1 abr. 2004. https://pubmed.ncbi.nlm.nih.gov/15060022/
PINGILI, R. B.; PAWAR, A. K.; CHALLA, S. R. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chemico-Biological Interactions, v. 302, p. 123–134, abr. 2019. https://pubmed.ncbi.nlm.nih.gov/30794797/
RAŠKOVIĆ, A. et al. Hepatoprotective and antioxidant potential of Pycnogenol® in acetaminophen‐induced hepatotoxicity in rats. Phytotherapy Research, 16 dez. 2018. https://pubmed.ncbi.nlm.nih.gov/30556209/
REJ, R. Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues. Clinical Chemistry, v. 24, n. 11, p. 1971–1979, 1 nov. 1978. https://pubmed.ncbi.nlm.nih.gov/30556209/
SALMAN, A. A. et al. Assessment of antioxidant traits and protective action of Egyptian acacia pods extracts against paracetamol‐induced liver toxicity in rats. Journal of Food Biochemistry, v. 44, n. 9, 21 jul. 2020. https://pubmed.ncbi.nlm.nih.gov/32691869/
SASIDHARAN, S. et al. In Vitro Antioxidant Activity and Hepatoprotective Effects of Lentinula edodes against Paracetamol-Induced Hepatotoxicity. Molecules, v. 15, n. 6, p. 4478–4489, 23 jun. 2010. https://pubmed.ncbi.nlm.nih.gov/20657455/
SHEHAB, N. G. et al. Preparation and antihepatotoxicity activity of Fagonia indica extract and its solid dispersion formulation. Pakistan Journal of Pharmaceutical Sciences, v. 33, n. 3, p. 1025–1032, 1 maio 2020. https://pubmed.ncbi.nlm.nih.gov/33191226/
SINGH, H. et al. Hepatoprotective effect oftrans-Chalcone on experimentally induced hepatic injury in rats: inhibition of hepatic inflammation and fibrosis. Canadian Journal of Physiology and Pharmacology, v. 94, n. 8, p. 879–887, ago. 2016. https://pubmed.ncbi.nlm.nih.gov/27191034/
SRINIVASAN, V.; PANNEERSELVAM, R.; GUNASEKARAN, S.; SUBRAMANI, PALANI. Ethanolic extract of Melia Azadirachta against acetaminophen induced nephrotoxicity. International Journal of PharmTech Research, n. 6, p. 70-79, jan. 2014.
STURGILL, M. G.; LAMBERT, G. H. Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clinical Chemistry, v. 43, n. 8 Pt 2, p. 1512–1526, 1 ago. 1997. https://pubmed.ncbi.nlm.nih.gov/9265903/
TAHA, M. E.-S.; KAMAL, A. M.; IBRAHIM, D. R. Possible protective effect of olive leaves extract on paracetamol induced hepatotoxicity in male albino rats. Bioscience Journal, v. 36, n. 1, 31 out. 2019.
TEMEL, Y. et al. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 393, n. 3, p. 325–337, 16 out. 2019. https://pubmed.ncbi.nlm.nih.gov/31620822/
TYGSTRUP, N. Assessment of liver function: Principles and practice. Journal of Gastroenterology and Hepatology, v. 5, n. 4, p. 468–482, ago. 1990. https://pubmed.ncbi.nlm.nih.gov/2129819/