HLA-I allelic variants related to resistance and susceptibility to severe SARS-CoV-2 infection
Variantes alélicas do HLA I relacionados a resistência ou suscetibilidade a infecção grave pelo SARS-CoV-2
DOI:
https://doi.org/10.53660/CLM-979-23C15Palavras-chave:
Pandemias, Coronavirus, Antígenos HLAResumo
Objective: Identify allelic variants of HLA I related to possible resistance or susceptibility to severe SARS-CoV-2 infection and describe this relationship. Methods: This study is a descriptive literature review based on articles published between the years 2020 and 2021 in the databases: SciELO, ScienceDirect, PubMed /MEDLINE, Capes Periodicals, BVS, Wiley Online Library; that was available in Brazilian Portuguese and English. Results: The analyzed studies demonstrated that HLA I alleles can be considered like determinants of resistance or susceptibility to COVID-19 due to their ability to bind to SARS-CoV-2 peptides, influencing in the regulation of the immune response against the SARS-CoV-2 virus. Conclusions: There is an agreement between the authors regarding the role of HLA I like a determinant of resistance and genetic susceptibility to SARS-CoV-2, where the HLA-B*46:01 was the most cited (20% frequency) as allele that confers susceptibility to the virus, and HLA-A *02: 01 and HLA-A *31: 01 were the most cited among the alleles that may confer protection against the most severe infection of COVID-19 (frequency of 19% and 18 % respectively).
Downloads
Referências
BAO, R, et al. ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: Implications for SARS-CoV-2 COVID-19. J Immunother Cancer, v.8, n.2, p.1-14, Jul/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32675312/
BRASIL, Ministério da Saúde do. O que é a covid-19?. Brasília, 2020. Disponível em: <https://www.gov.br/saude/pt-br/coronavirus/o-que-e-o-coronavirus>. Acesso em 02 março de 2021.
BRITO, S.B.P, et al. Mecanismos imunopatológicos envolvidos na infecção por SARS-CoV-2. J Bras Patol e Med Lab., v.56, p.1–10, Nov/2020. URL: https://www.scielo.br/j/jbpml/a/8BSZPYms95JCjyW5stbLBGM/?format=pdf&lang=pt
DEBNATH, M; BANERJEE, M; BERK, M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J., v.34, n.7, p.8787–8795, Jul/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32525600/
DI MARIA, E, et al. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis. Hum Genomics., v.14, n.1, p.1-19, Sep/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32917282/
GOLDBERG, A.C; RIZZO, L.V. Estrutura do MHC e função – apresentação de antígenos. Parte 1. Einstein, São Paulo, V.13, N.1, P.153-156, 2015. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977602/
HUANG, C, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, V.397, N.10270, p.220-232, January/2021. URL: https://pubmed.ncbi.nlm.nih.gov/33428867/
ITURRIETA-ZUAZO, I, et al. Possible role of HLA class-I genotype in SARS-CoV-2 infection and progression: A pilot study in a cohort of Covid-19 Spanish patients. Clin Immunol., v.219, n.108572, p.1-8, Aug/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32810602/
MOURA, R.R, et al. Immunoinformatic approach to assess SARS-CoV-2 protein S epitopes recognised by the most frequent MHC-I alleles in the Brazilian population. J Clin Pathol., v.74, n.8, p.528–32, Aug/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32759312/
NELDE, A, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol., v.22, n.1, p.74–85, Jan/2021. URL: https://www.nature.com/articles/s41590-020-00808-x
NGUYEN, A, et al. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J Virol., v.94, n.13, p.1-12, Jun/2020. URL: https://journals.asm.org/doi/10.1128/JVI.00510-20
NOVELLI, A, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA., v.96, n.5, p.610–614, Nov/ 2020. URL: https://pubmed.ncbi.nlm.nih.gov/32827207/
OVSYANNIKOVA, I.G, et al. The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunol Rev., v.296, n.1, p.205-219, Jul/2020. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404857/
ROMERO-LÓPEZ, J.P, et al. Prediction of SARS-CoV2 spike protein epitopes reveals HLA-associated susceptibility. Res Sq., v.1, p.1-16, April/2020. URL: https://assets.researchsquare.com/files/rs-25844/v1/b1e5d8a6-774d-43f4-b171-798df829d751.pdf?c=1631833553
SANTOS, André Eduardo dos. variação das proteínas do MHC de classe I (HLA-A e HLA-B) em casais com histórico de aborto e sua relação com a seleção sexual. 2016. 29f. Monografia (Bacharel em Biomedicina) - Universidade Federal do Paraná, Curitiba, 2016. URL: https://docplayer.com.br/80274463-Universidade-federal-do-parana-setor-de-ciencias-biologicas-curso-de-biomedicina-andre-eduardo-dos-santos.html
SAÚDE, Organização Pan-Americana da. Folha informativa de covid-19 - Escritório da OPAS e da OMS no Brasil. OPAS, 2021. Disponível em: https://www.paho.org/pt/covid19. Acesso em 02 março de 2021
SHAH, V.K, et al. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol., v.11, n.1949, p.1-17, Aug/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32849654/
WANG, W, et al. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease‐2019 (COVID‐19). Hla., v.96, n.2, p.194–196, Jun/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32424945/
TAVASOLIAN, F, et al. HLA, Immune Response, and Susceptibility to COVID-19. Front Immunol., v.11, p.1-7, Jan/2020. URL: https://www.frontiersin.org/articles/10.3389/fimmu.2020.601886/full
XAVIER, A. R, et al. COVID-19: Clinical and laboratory manifestations in novel coronavirus infection. J Bras Patol e Med Lab. v.56, p. 1-9, 2020. URL: https://www.scielo.br/j/jbpml/a/PrqSm9T8CVkPdk4m5Gg4wKb/?lang=en
XIONG, Q, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin. Microbiol. Infect., V.27, n.1, p.89-95, Jan/2021. URL: https://pubmed.ncbi.nlm.nih.gov/32979574/
ZIDI, I. Puzzling out the COVID-19: Therapy targeting HLA-G and HLA-E. Hum Immunol., v.81, n.12, p.697-701, Dec/2020. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539797/
ZHANG, T; WU, Q; ZHANG, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol, v.30, n.7, p. 1346-1351, April/2020. URL: https://pubmed.ncbi.nlm.nih.gov/32197085/
ZHANG, Y.Z; HOLMES, E.C. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell., v.181, n.2, p.223–227, April 2020. URL: https://pubmed.ncbi.nlm.nih.gov/32220310/