An analysis of the chemical and morphological properties of brazilian jute plant fiber (Corchorus capsularis): the Amazon fiber
Uma análise das propriedades químicas e morfológicas da fibra vegetal de juta brasileira (Corchorus capsularis): a fibra amazônica
Palavras-chave:
Fibras vegetais, Compósitos, JutaResumo
In recent years, the development of new composites has increased a lot, especially those that use plant fibers as reinforcement material. A critical feature for this type of application is how these fibers behave in relation to temperature variation. In this sense, this research stands out among other thermodynamic studies carried out with jute vegetable fiber (Corchorus capsularis) natural from the Amazon region. The main objective of this study is to evaluate the thermal behavior of the mentioned fiber, through the loss of its mass until the decomposition of its structural components (natural moisture, hemicellulose, cellulose, lignin and its residual substances) when subjected to temperatures up to 900°C. Vegetable fibers have a high sensitivity to environmental effects, such as temperature variations and humidity itself. The sample preparation phase for the fiber under analysis was also addressed in this study, and it was found that different preparation techniques can have a direct impact on the results of the experiments.
Downloads
Referências
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9939/11: Agregado graúdo – Determinação do teor de umidade total – Método de ensaio. Rio de Janeiro, 2011.
ADRIAN, P. MOURITZ; RAJAPAKSE, Y.; Explosion blast response of composites, Journal of Composite Materiais, Vol.49, pp.1141-1147, 2018.
ADRIANO, V. IGOR.; AWREJCEWICZ, JAN.; DANISHEVSKYY, V. VLADYSLAV. Asymptotical Mechanics of Composites Modelling Composites without FEM, Cultural Científico, Vol.35, pp. 2369-2380, 2017.
ASASUTJARIT, C.; CHAROENVAI, S.; HIRUNLABH, J.; KHEDARI, J. Materials and mechanical properties of pretreated coir-based green composites. Composites Part B: Engineering, v. 40, n. 7, p. 633-637, 2009.
BALLESTEROS, J. E. M; SANTOS, S. F.; MÁRMOL, G.; SAVASTANO JR, H; FIORELLI, J. Evaluation of cellulosic pulps treated by hornification as reinforcement of cementitious composites. Construction and Building Materials, v. 100, p. 83-90, 2015.
CHAFEI, S. et al. Influence du traitement des fibres de lin sur la rhéologie et les erformances d’un mortier-analyse de la durabilité. In: FRENCH INTERNATIONAL SYMPOSIUM, 1., 2012, Toulouse. Proceedings. Toulouse: NoMaD, 2012.
CHAFEI, S. et al. Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials, Guildford, v. 54, n. 1, p. 59-64, Mar. 2014.
CLARAMUNT, J.; ARDANUY, M; GARCÍA-HORTAL; J. A.; TOLÊDO FILHO, R. D. The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, v. 33, n. 5, p. 586-595, 2011.
DINIZ, J. M. B. F.; GIL, M. H.; CASTRO, J. A. A. M. Hornification—its origin and interpretation in wood pulps. Wood Science and Technology, v. 37, n. 6, p. 489-494, 2004.
FERREIRA, S. R.; SILVA, F. A.; LIMA, P. R. L.; TOLDEO FILHO, R. D. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Construction and Building Materials, v. 139, p. 551- 561, 2017.
FERREIRA, S. R.; PEPE, M.; MARTINELLI, E.; SILVA, F. A; TOLEDO FILHO, R. D. Influence of natural fibers characteristics on the interface mechanics with cement-based matrices. Composites Part B: Engineering, v. 1401, p. 183-196, 2018.
FIDELIS, M. E. A. Desenvolvimento e caracterização mecânica de compósitos cimentícios têxteis reforçados com fibras de juta. Tese (Doutorado em Engenharia Civil) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2014.
JAHAN, M.S. et al. Chemical characteristics of ribbon retted jute and its effect on pulping and papermaking properties. Industrial Crops and Products, v. 84, p. 116 – 120, 2016.
KABIR, M. M.; WANG, H.; LAU, K. T.; CARDONA, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, v. 43, n. 7, p. 2883-2892, 2012.
KLOCK, U.; MUNIZ, G. I. B.; HERNANDEZ, J. A.; ANDRADE, I. S. Química da Madeira, 3. ed., Universidade Federal do Paraná, 2005.
LERTWATTANARUK, P. SUNTIJITTO, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, v. 94, p. 664-669, 2015.
MARQUES, S. G. M. Estudo das propriedades físicas e mecânicas e da durabilidade de compósitos cimentícios reforçados com fibra amazônica. Tese (Doutorado em Engenharia de Estruturas) – Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlo-SP, 2015.
MANSOURIAN, A; RAZMI, A; RAZAVI, M. Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Construction e Building Materials, v. 117, p. 37 – 46, 2016.
MELO FILHO, J. A. Desenvolvimento e caracterização de laminados cimentícios reforçados com fibras longas de sisal. 2005. 124 f. Universidade Federal do Rio de Janeiro, COPPE, 2005.
NEITHALATH, N.; WEISS, J.; OLEK, J. Acoustic performance and damping behavior of cellulose–cement composites. Cement and Concrete Composites, v. 26, n. 4, p. 359-370, 2004.
QUIROGA, A. MARZOCCHI, V., RINTOUL, I. Influence of wood treatments on mechanical properties of wood–cement composites and of Populus Euroamericana wood fibers. Composites Part B: Engineering, v. 84, p. 25-32, 2016.
RAMESH, M.; PALANIKUMAR, K.; REDDY, K. H. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, v. 79, p. 558 – 584, 2017.
RATHORE, A.; PRADHAN, M. K. Hybrid Cellulose Bionanocomposites from banana and jute fibre: A Review of Preparation, Properties and Applications. Materials Today: Proceedings, v. 4, n. 2, p. 3942-3951, 2017.
SATYANARAYANA K.G. GUIMARÃES. J.L. WYPYCH F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, v. 38, I.7, p.1694-1709, 2007.
SEGAL, L. et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, Princeton, v. 29, n. 10, p. 786-794, Oct. 1959.
SHOKRIEH, M. MAHMOOD. Residual stresses in Composites. Composites Structures, Vol.92, pp.2901-2905, 2017.
SPINACÉ, M. A. S.; LAMBERT, C. S.; FERMOSELLI, K. K. G.; PAOLI, M. A. Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers, v. 77, n. 1, p. 47- 53, 2009.
TAPPI. T 204 om-88: Solvent extractives of wood and pulp. 2007.
TAPPI. T 222om-88: Acid-insoluble lignin in wood and pulp. 2006.
TAPPI. T 257 cm-85: Sampling And Preparing Wood For Analysis. 2002.
THOMAS, M. G. et al. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. International Journal of Biological Macromolecules, Guildford, v. 81, n. 1, p. 768-777, Nov. 2015.
YILMAZ, N. D. Agro-Residual Fibers as Potential Reinforcement Elements for Biocomposites. In Lignocellulosic Polymer Composites, Thakur V.K., Edd.; Scrivener Pulising: Denizli, Turkey, 2014, p. 231-270.
YAMAN, S. Pyrolysis of biomass to produce fuels and chemical feedstock. Energy Conversion and Management, Oxford, v. 45, n. 1, p. 651-671, Nov. 2004.