Salmon oyster mushroom: growth characteristics and protease production on a laboratory scale
Cogumelo ostra salmão: características de crescimento e produção de proteases em escala laboratorial
Palavras-chave:
Pleurotus, Açaí, Resíduo, Densidade micelial, EnzimasResumo
Pleurotus have an easy cultivation and are excellent sources of proteolytic enzymes. The aimed was evaluate the mycelial growth and extracellular protease activity of Pleurotus ostreatoroseus. The mushroom was grown on potato dextrose agar (BDA) with yeast extract (YE) 0.5% (w/v). The radial mycelial growth velocity (RCV) and mycelial density occurred on different media containing 0.5% (w/v) YE: Potato Dextrose agar (BDA), GYP agar (glucose, yeast extract and peptone), malt extract agar (MEA), purple yam extract agar (EIR), torn yam extract agar (CEIN), aria extract agar (EA). Proteolytic activity was determined by the gelose block method. In mycelial growth (VCM) is used: cupuaçu exocarp (CC), açaí (Sac), pineapple (CsAb) and sawdust (SER), supplemented with rice bran (FA) or wheat bran (FT) were used. Proteases were extracted in sterile distilled water under 180 rpm agitation at 30 °C. Significant RCV was observed in MEA+YE (12.32 ± 0.10 mm/day). However, GYP agar showed strong mycelial density. Significant substrate mixture with strong mycelial density occurred on Sac+FA (0.61 ± 0.09 cm/day). The tested media were efficient in the production of extracellular proteases by this mushroom.
Downloads
Referências
ALBUQUERQUE, M. P. DE; MARINS, R.; PEIL, N. Mycelial growth of Lentinus sajor caju (Fr.) Fr. and Pleurotus spp. in different agricutural wasteS. Biosci. J., Uberlândia, v. 28, n. 5, p. 895-902, 2012.
ARAÚJO, D. J. C.; MACHADO, A. V.; VILARINHO, M. C. L. G. Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste and Biomass Valorization, v. 10, n. 10, p. 2863–2878, 2019.
BARBOSA, E. E. P.; PIMENTA, L.; BRITO, A. K. P.; MARTIM, S. R.; TEIXEIRA, M. F. Cultivo de cogumelo comestível em resíduos lignocelulósicos de floresta tropical para produção de proteases. Brazilian Journal of Development. Curitiba, v. 6, n. 11, p.92475-92485, nov. 2020.
BANO, S. et al. Characterization of crude protease produced by Pleurotus eryngii ATCC 90888. Pak. J. Biotechnol. v. 13, p. 193-198, 2018.
BATISTA, S. C. P. et al. Biomassa residual do processamento de produtos hortícolas da Amazônia para crescimento micelial e produção de proteases por uma espécie de cogumelo comestível. Research, Society and Development, v. 10, n. 3, e35310313393, 2021.
BARH, A. et al. Genetic improvement in Pleurotus (oyster mushroom): a review. 3 Biotech, v. 9, n. 9, 2019.
BELLETTINI, M. B. et al. Factor’s affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, v. 26, n. 4, p. 633–646, 2019.
BENMRAD, M. et al. Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnology, v. 19, n. 1, p. 1–18, 2019.
BONA, E. A. M. DE et al. Comparação de métodos para avaliação da atividade antimicrobiana e determinação da concentração inibitória mínima (cim) de extratos vegetais aquosos e etanólicos. Arquivos do Instituto Biológico, v. 81, n. 3, p. 218–225, 2014.
BRITO, A. K. P. DE et al. Avaliação de substratos de floresta tropical para cultivo e produção de proteases por Pleurotus djamor. Research, Society and Development, v. 10, n. 3, p. e31810313385, 2021.
BUMANLAG, C. P. B. et al. Optimum conditions for mycelia growth and basidiocarp production of Pleurotus djamor on corn-based media. International Journal of Biology. Issn: 2277–4998. v. 7, n. April, p. 558–575, 2018.
CASTILLO, T. A. et al. Mycelial growth and antimicrobial activity of Pleurotus species (Agaricomycetes). International Journal of Medicinal Mushrooms, v. 20, n. 2, p. 191–200, 2018.
CHANG, S. T.; WASSER, S. P. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (Review). International Journal of Medicinal Mushrooms, v. 20, n. 12, p. 1121–1133, 2018.
CHOI, J.M. et al. Industrial applications of enzyme biocatalysis: status and future aspect. Biotechnol Adv. v. 33, p. 1443–1454, 2015.
COELHO, M. P. S. L.V. et al. Alternativa fontes nutricionais para desenvolvimento da fase micelial e produção de hidrolases por cogumelo comestível de floresta tropical / Alternative of nutritional sources for the development of the mycellial phase and production of hydrolases by edible mushroom from tropical forest. Brazilian Journal of Development, v. 7, n. 3, p. 22890–22907, 2021.
COELHO, M. P. S. L. V. et al. Ciclo de produção de cogumelos comestíveis cultivados em resíduos lignocelulósicos da fruticultura Amazônica: Um estudo de caso. Revista Concilium, Vol. 22, n. 2, 2022.
DULAY, R. M. R.; RIVERA, A. G. C.; GARCIA, E. J. B. Mycelial growth and basidiocarp production of wild hairy sawgill Lentinus strigosus, a new record of naturally occurring mushroom in the Philippines. Biocatalysis and Agricultural Biotechnology, v. 10, n. March, p. 242–246, 2017.
FONSECA, T. R. B. DA; BARRONCAS, J. F.; TEIXEIRA, M. F. S. Produção Em Matriz Sólida E Caracterização Parcial Das Proteases De Cogumelo Comestível Da Floresta Amazônica. Revista Brasileira de Tecnologia Agroindustrial, v. 8, n. 1, 2014.
FONSECA, T. R. B. et al. Cultivation and nutritional studies of an edible mushroom from North Brazil. African Journal of Microbiology Research, v. 9, n. 30, p. 1814–1822, 2015.
GRIFFIN, D. H. Fungal physiology (2nd Edition). J. Wiley & Sons, Inc., New York, p. 458. 1994.
GURUMALLESH, P. et al. A systematic reconsideration on proteases. International Journal of Biological Macromolecules, v. 128, p. 254–267, 2019.
HAKOBYAN, L., YAN, G., ARMEN, T. Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs. International Journal of Hydrogen Energy, v. 37, p. 6519–6526, 2012.
LACAZ, C. S. et al. Tratado de micologia médica Lacaz. Sarvier. v. 1, p. 304, 2002.
KORHONEN, J.; HONKASALO, A.; SEPPÄLÄ, J. Circular Economy: The Concept and its Limitations. Ecological Economics, v. 143, p. 37–46, 2018.
KUIJK, S. J. A. Fungal treatment of lignocellulosic biomass fungal treatment of lignocellulosic biomass. Tese de Doutorado. p.192. 2016.
MACHADO, A. R. G. et al. Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi Journal of Biological Sciences, v. 23, n. 5, p. 621–627, 2016.
MACHADO, A. R. G. et al. Production and characterization of proteases from edible mushrooms cultivated on amazonic tubers. African Journal of Biotechnology, v. 16, n. 46, p. 2160–2166, 2017.
MAFTOUN, P. et al. The Edible Mushroom Pleurotus spp.: I. Biodiversity and Nutritional Values. International Journal of Biotechnology for Wellness Industries, v. 4, n. 2, p. 67–83, 2015.
PANDEY, A. K.; RAJAN, S.; SARSAIYA, S.; JAIN, S. K. Mushroom for the National Circular Economy.International Journal of Scientific Research in Biological Sciences, v.7, n. 6, p.58-66, dec. 2020.
PRADO, F. B. et al. Production of bioactive compounds by Aspergillus kept under two preservation conditions. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 12, n. 1, p. 37-47, jan.-abr. 2017.
RABUSKE, E. R. et al. Substratos alternativos para o cultivo do cogumelo comestível ostra salmão: Pleurotus djamor. Caderno de Pesquisa. Santa Cruz do Sul, v. 31, n. 2, p. 22-24, mai./ago. 2019.
RAHI, D. K.; THAKUR, S.; MALIK, D. Comparative qualitative profile of various extracellular enzymes produced by two indigenous fungus Lentinus cladopus and Pleurotus pulmonarius. International Journal of Scientific Research in Biological Sciences, v. 5, n. 3, p. 85–87, 2018.
RAMAN, J. et al. Cultivation and Nutritional Value of Prominent Pleurotus Spp.: An Overview. Mycobiology, v. 49, n. 1, p. 1–14, 2021.
RAMOS, A.C. et al. Cogumelos - Produção, Transformação e Comercialização. Portugal. Publinsustria. 2015.
RESHMY, R. et al. Updates on high value products from cellulosic biorefinery. Vol 308, ISSN 0016-2361, 2022.
RITOTA, M.; MANZI, P. Pleurotus spp. cultivation on different agri-food by-products: Example of biotechnological application. Sustainability (Switzerland), v. 11, n. 18, 2019.
ROYSE, D. J.; BAARS, J.; TAN, Q. Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms, v. 2010, p. 5–13, 2017.
SANTANA, R. S. et al. Produção e caracterização de enzimas proteolíticas do cogumelo Ostra-Rei por fermentação submersa. Revista Concilium, vol. 22, nº 2. 2022.
SILVA, G. M. DE M. E et al. Screening, production and biochemical characterization of a new fibrinolytic enzyme produced by Streptomyces sp. (Streptomycetaceae) isolated from Amazonian lichens. Acta Amazonica, v. 46, n. 3, p. 323–332, 2016.
SIQUEIRA, F. G.; ROMERO PELAEZ, R. D.; GONÇALVES, C. C.; CONCEIÇÃO, A. A.; MARQUEZ, A. F.; MENDONCA, S. Simpósio Nacional sobre Cogumelos Comestíveis e Encontro de Biotecnologia da UNIFESP, São José dos Campos, SP. Anais Brasília, DF: Embrapa, p.91-102. 2017.
WALKER, G. M.; WHITE, N. A. Introduction to Fungal Physiology. Fungi: Biology and Applications, Third Edition. Edited by Kevin Kavanagh. John Wiley & Sons, Inc. 2018.