Numerical solution of non-isothermal flow in oil reservoirs using OpenACC

Simulação numérica do escoamento não-isotérmico em reservatórios de petróleo usando OpenACC

Autores

  • Ralph Alves Bini da Silva Almeida Universidade do Estado do Rio de Janeiro
  • Grazione de Souza Rio de Janeiro State University
  • Helio Pedro Amaral Souto Universidade do Estado do Rio de Janeiro

Palavras-chave:

Computação de Alto Desempenho, Escoamento Não-isotérmico, OpenACC, Simulação Numérica de Reservatórios, Recuperação terciária

Resumo

In this work, we performed a numerical simulation of the non-isothermal flow in an oil reservoir. Also, we used the OpenACC API to parallelize specific parts of the original code, which allowed the simultaneous execution of different tasks on a NVIDIA GTX 970 G1 video card in a shared memory architecture. The problem was studied using a vertical producer well and static heating wells in a two-dimensional domain. We used the Control Volume Finite Difference (CVFD) method to discretize the governing equations and the Conjugate Gradients method to obtain the solutions (pressure and temperature) of the systems of algebraic equations. As a result, concerning computational performance, a significant reduction in execution time was obtained with the parallelized version.

Downloads

Não há dados estatísticos.

Referências

AMARAL, V. et al. Programming languages for data-intensive hpc applications: A systematic mapping study. Parallel Computing, v. 91, p. 102584, 2020.

AOUIZERATE, G.; DURLOFSKY, L. J.; SAMIER, P. New models for heater wells in subsurface simulations, with application to the in situ upgrading of oil shale. Computational Geoscience, v. 18, n. 3, p. 183–194, 2015.

BERA, A.; BABADAGLI, T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Applied Energy, v. 151, p. 206 –226, 2015.

BOURDET, D. Well Test Analysis: the Use of Advanced Interpretation Models. Amsterdam: Elsevier, 2002. (Handbook of Petroleum Exploration and Production 3).

CHAPMAN, B.; JOST, G.; PAS, R. van der. Using OpenMP: Portable Shared Memory Parallel Programming. Cambridge, USA: Massachusetts Institute of Technology, 2008.

CHEN, Y. et al. A preliminary feasibility analysis of in situ combustion in a deep fractured-cave carbonate heavy oil reservoir. Journal of Petroleum Science and Engineering, v. 174, p. 446 – 455, 2019.

CREMON, M. A.; GERRITSEN, M. G. Multi-level delumping strategy for thermal enhanced oil recovery simulations at low pressure. Fluid Phase Equilibria, v. 528, p. 112850, 2021.

DA SILVA ALMEIDA, R. A. B. Solução numérica do escoamento não-isotérmico em reservatórios de óleo pesado empregando computação paralela. Dissertação (Mestrado) — Universidade do Estado do Rio de Janeiro, Brasil, 2021.

DAKE, L. P. The Practice of Reservoir Engineering (Revised Edition). Amsterdam, The Netherlands: Elsevier, 2001. Developments in Petroleum Science 36.

ERTEKIN, T.; ABOU-KASSEM, J.; KING, G. Basic Applied Reservoir Simulation. Richardson, USA: Society of Petroleum Engineers, 2001.

JAQUIE, K. Extensão da Ferramenta de Apoio à Programação Paralela (F.A.P.P.) para ambientes paralelos virtuais. Dissertação (Mestrado) — Universidade de São Paulo, São Carlos, 1999.

KIM, J. Y.; KANG, J.-S.; JOH, M. GPU acceleration of MPAS microphysics WSM6 using OpenACC directives: Performance and verification. Computers & Geosciences, v. 146, p. 104627, 2021.

KOU, J.; SUN, S. On iterative IMPES formulation for two-phase flow with capillarity in heterogeneous porous media. International Journal of Numerical Analysis and Modeling, v. 1, n. 1, p. 20–40, 2004.

LOSADA, N. et al. Portable application-level checkpointing for hybrid MPI-OpenMP applications. Procedia Computer Science, v. 80, p. 19–29, 2016.

MARQUEZ, S. G. et al. Delineation of most efficient recovery technique for typical heavy oil reservoir in the middle east region through compositional simulation of temperature-dependent relative permeabilities. Journal of Petroleum Science and Engineering, v. 186, p. 106725, 2020.

MOHAMMADI, K.; AMELI, F. Toward mechanistic understanding of fast SAGD process in naturally fractured heavy oil reservoirs: Application of response surface methodology and genetic algorithm. Fuel, v. 253, p. 840 – 856, 2019.

MOREIRA, K. C. A. Anotação automática de código com diretivas OpenACC. Dissertação (Mestrado) — Universidade Federal de Minas Gerais, Belo Horizonte, 2015.

MOYNE, C. et al. Thermal dispersion in porous media: one-equation model. International Journal of Heat and Mass Transfer, v. 43, n. 20, p. 3853–3867, 2000.

OPENACC ORGANIZATION. OpenACC Programming and Best Practices Guide. https://www.openacc.org/resources, 2015.

PEACEMAN, D. W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Society of Petroleum Engineers Journal, v. 23, n. 3, p. 531–543, 1983.

REDONDO, C. A fast IMPES multiphase flow solver in porous media for reservoir simulation. Tese (Doutorado) — Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Aeronáuticos, 2017.

ROUSSET, M. Reduced-order modelling for thermal simulation. Tese (Doutorado) —Stanford University, 2010.

SAAD, Y. Iterative Methods for Sparse Linear Systems. 2. ed. Philadelphia: SIAM, 2003.

SULZBACH, M. Programação Paralela Híbrida para CPU e GPU: Uma avaliação do OpenACC frente a OpenMP e CUDA. Dissertação (Mestrado) — Universidade Federal de Santa Maria, Santa Maria, 2014.

VENNEMO, S. B. Multiscale Simulation of Thermal Flow in Porous Media. Dissertação (Mestrado) — Norwegian University of Science and Technology, Trondheim, Norway, 2016.

WERNECK, L. F. et al. An OpenMp parallel implementation using a coprocessor for numerical simulation of oil reservoirs. Computational & Applied Mathematics, v. 38, p. 33, 2019.

Downloads

Publicado

2023-02-13

Edição

Seção

Articles