A mathematical model describing the tip-stalk regulation in angiogenesis
DOI:
https://doi.org/10.53660/CLM-4316-24V10Palavras-chave:
Angiogenesis, Physiological Angiogenesis, Pathological Angiogenesis, Protein Dynamics, Mathematical ModelingResumo
Angiogenesis is the process of new blood vessel growth from existing vessels, involving extensive cell signaling. Under normal conditions, new vessels are robust and organized, with a balance among angiogenesis factors. In abnormal conditions, such as tumor development, vessels are stunted and tangled due to an imbalance of these factors. Pathological angiogenesis stimulates rapid vessel growth to feed the oxygen and nutriente starved tumor. Inhibiting angiogenesis can cause side effects like hypertension, thrombosis, and fatigue. To better understand this process, significant effort has gone into studying signaling pathways, contributing to drug development for diseases like cancer. This study presents a mathematical model describing angiogenesis on a microscopic scale, comparing its results with experimental data on vascular network topology. The model, implemented in MatLab®, uses ordinary differential equations to represent cell behavior. Results show that altering VEGF (Vascular Endothelial Growth Factor) disrupts system balance, impacting angiogenesis and possibly explaining differences in network topology seen experimentally.
Downloads
Referências
Alves, A., Mesquita, O., Gómez-Gardeñes, J., & Agero, U. (2018). Graph analysis of cell clusters forming vascular networks. Royal Society Open Science, 5(3), 171592.
Andersson, E. R., Sandberg, R., & Lendahl, U. (2011). Notch signaling. Development, 138(17), 3593–3612.
Apte, R. S., Chen, D. S., & Ferrara, N. (2019). VEGF in signaling and disease. Cell, 176(6), 1248–1264.
Beatus, P., & Lendahl, U. (1998). Notch and neurogenesis. Journal of Neuroscience Research, 54(2), 125–136.
Bhadada, S. V., Goyal, B. R., & Patel, M. M. (2011). Angiogenic targets for potential disorders. Fundamental & Clinical Pharmacology, 25(1), 29–47.
Boareto, M., Jolly, M. K., Ben-Jacob, E., & Onuchic, J. N. (2015a). Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences, 112(29), E3836–E3844.
Boareto, M., Jolly, M. K., Lu, M., Onuchic, J. N., Clementi, C., & Ben-Jacob, E. (2015b). Jagged–Delta asymmetry in Notch signaling can give rise to a sender/receiver hybrid phenotype. Proceedings of the National Academy of Sciences, 112(5), E402–E409.
Boareto, M., Jolly, M. K., Goldman, A., Pietilä, M., Mani, S., Sengupta, S., Ben-Jacob, E., Levine, H., & Onuchic, J. N. (2016). Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. Journal of the Royal Society Interface, 13(118).
Bocci, F., Onuchic, J. N., & Jolly, M. K. (2020). Understanding the principles of pattern formation driven by Notch signaling by integrating experiments and theoretical models. Frontiers in Physiology, 11, 929.
Cheng, W. K., Oon, C. E., Kaur, G., Sainson, R. C., & Li, J.-L. (2022). Downregulation of manic fringe impedes angiogenesis and cell migration of renal carcinoma. Microvascular Research, 142, 104341.
Chen, S., Tang, C., Chie, M., Tsai, Y. F. C., Lu, Y., Chen, W., Lai, C., Wei, C., Tai, H., Chou, W., & Wang, S. (2019). Resistin facilitates VEGF-A dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death & Disease, 10(31).
De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457–474.
Domingues, J. S. (2010). Modelo matemático e computacional do surgimento da angiogênese em tumores e sua conexão com as células-tronco (Dissertação de mestrado, Centro Federal de Educação Tecnológica de Minas Gerais). Belo Horizonte, Brasil.
Flournoy, J., Ashkanani, S., & Chen, Y. (2022). Mechanical regulation of signal transduction in angiogenesis. Frontiers in Cell and Developmental Biology, 10, 1069783.
Folkman, J. (1984). In biology of endothelial cells, Developments in Cardiovascular Medicine (27).
Fouladzadeh, A., Dorraki, M., Min, K., Cockshell, M., Thompson, E., Verjans, J., & Abbott, D. (2021). The development of tumour vascular networks. Communications Biology, 4(1), 1111.
Fragoso, C. R., Ferreira, T. F., & Marques, D. M. (2009). Modelagem Ecológica em Ecossistemas Aquáticos. Oficina de Textos.
Freire, R. M. (2007). Modelagem matemática para a simulação de estratégias de controle biológico da mosca-do-mediterrâneo C. capitata (Diptera: Tephritidae) em plantações de citrus: Utilização de variáveis temporais e espaciais (Dissertação de mestrado, Universidade Estadual Paulista). Rio Claro, Brasil.
Funahashi, Y., Hernandez, S. L., Das, I., Ahn, A., Huang, J., Vorontchikhina, M., Sharma, A., Kanamaru, E., Borisenko, V., & DeSilva, D. M. (2008). A Notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Research, 68(12), 4727–4735.
Geindreau, M., Bruchard, M., & Vegran, F. (2022). Role of cytokines and chemokines in angiogenesis in a tumor context. Cancers, 14(10), 2446.
Geudens, I., & Gerhardt, H. (2011). Coordinating cell behaviour during blood vessel formation. Development, 138(21), 4569–4583.
Huang, Y., & Nan, G. (2019). Oxidative stress induced angiogenesis. Journal of Clinical Neuroscience, 63, 13–16.
Jain, R. K. (2005). Normalization of tumor vasculature. Science, 307(5706), 58–62.
Jarriault, S., Brou, C., Logeat, F., Schroeter, E. H., Kopan, R., & Israel, A. (1995). Signalling downstream of activated mammalian Notch. Nature, 377, 355–358.
Kargozar, S., Baino, F., Hamzehlou, S., Hamblin, M. R., & Mozafari, M. (2020). Nanotechnology for angiogenesis: Opportunities and challenges. Chemical Society Reviews, 49(12), 5008–5057.
Kumar, S., Srivastav, R. K., Wilkes, D. W., Ross, T., Kim, S., Kowalski, J., Chatla, S.,
Zhang, Q., Nayak, A., Guha, M., Fuchs, S. Y., Thomas, C., & Chakrabarti, R. (2019). Estrogen dependent DLL1 mediated Notch signaling promotes luminal breast cancer. Oncogene, 38(1), 2092–2107.
Leite, N. M. G. (2009). Modelagem matemática para a conexão entre células-tronco e câncer (Dissertação de mestrado, Centro Federal de Educação Tecnológica de Minas Gerais). Belo Horizonte, Brasil.
Liao, B., & Oates, A. C. (2017). Delta-Notch signalling in segmentation. Arthropod Structure & Development 46 (3) 429–447.
Li, L., Krantz, I. D., Deng, Y., Genin, A., Banta, A. B., Collins, C. C., Qi, M., Trask, B. J., Kuo, W. L., & Cochran, J. (1997). Alagille syndrome is caused by mutations in human JAGGED1, which encodes a ligand for NOTCH1. Nature Genetics, 16(3), 243–251.
LoPilato, R. K., Kroeger, H., Mohan, S. K., Lauderdale, J. D., Grimsey, N., &
Haltiwanger, R. S. (2023). Two Notch1 Ofucose sites have opposing functions in mouse retinal angiogenesis. Glycobiology, 33(8), 661-672.
Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis. Cellular and Molecular Life Sciences, 77(9), 1745–1770.
Mercurio, A. M. (2019). VEGF/neuropilin signaling in cancer stem cells. International Journal of Molecular Sciences, 20(3), 1–12.
Moreira, E. A., & Ramos, R. (2021). Potencial antineoplásico dos fitocanabinóides. Revista Multidisciplinar em Saúde, 2(4), 137–137.
Mukherji, S. K. (2010). Bevacizumab (Avastin). American Journal of Neuroradiology, 31(2), 235–236.
Nascimento, D. L. (2021). Modelo matemático para a angiogênese baseado na dinâmica das vias de sinalização Notch e VEGF (Mestrado em Modelagem Matemática e Computacional). Centro Federal de Educação Tecnológica de Minas Gerais.
Nunes, D. N., Dias-Neto, E., Cardó-Vila, M., Edwards, J. K., Dobroff, A. S., Giordano, R. J., ... Pasqualini, R. (2015). Synchronous down-modulation of mir-17 family members is an early causative event in the retinal angiogenic switch. Proceedings of the National Academy of Sciences, 1–6.
Ozel, I., Duerig, I., Domnich, M., Lang, S., Pylaeva, E., & Jablonska, J. (2022). The good, the bad, and the ugly: Neutrophils, angiogenesis, and cancer. Cancers, 14(3), 536.
Patel, N. S., Li, J.-L., Generali, D., Poulsom, R., Cranston, D. W., & Harris, A. L. (2005).
Up-regulation of Delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research, 65(19), 8690–8697.
Phng, L., & Gerhardt, H. (2009). Angiogenesis. Developmental Cell, 16(2), 196–208.
Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258–262.
Qing, X., Xu, W., Liu, S., Chen, Z., Ye, C., & Zhang, Y. (2022). Molecular characteristics, clinical significance, and cancer immune interactions of angiogenesis associated genes in gastric cancer. Frontiers in Immunology, 13, 843077.
Qi, S., Deng, S., Lian, Z., & Yu, K. (2022). Novel drugs with high efficacy against tumor angiogenesis. International Journal of Molecular Sciences, 23(13), 6934.
Reiche, F. V., Bacal, F., & Mano, M. S. (2009). Inibidores da angiogênese e seus efeitos cardiovasculares no paciente com câncer: Importância do manejo multidisciplinar. Revista da Sociedade de Cardiologia do Estado de São Paulo, 19(4), 572–583.
Ross, D. A., & Kadesch, T. (2001). The Notch intracellular domain can function as a coactivator for LEF-1. Molecular and Cellular Biology, 21(22), 7537–7544.
Sarin, A., & Marcel, N. (2017). The Notch1-autophagy interaction: Regulating self-eating for survival. Autophagy, 13(2), 446–447.
Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks.
Scianna, M., Bell, C., & Preziosi, L. (2013). A review of mathematical models for the formation of vascular networks. Journal of Theoretical Biology, 333, 174–209.
Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes & Cancer, 2(12), 1097–1105.
Siebel, C., & Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiological Reviews, 97, 1235–1294.
Silva, G. M. F. (2012). Células-tronco e surgimento de tumores (Dissertação de mestrado, Centro Federal de Educação Tecnológica de Minas Gerais). Belo Horizonte, Brasil.
Siveen, K. S., Prabhu, K., Krishnankutty, R., Kuttikrishnan, S., Tsakou, M., Alali, F. Q., Dermime, S., Mohammad, R. M., & Uddin, S. (2017). Vascular endothelial growth factor (VEGF) signaling in tumour vascularization. Current Vascular Pharmacology, 15(7), 339–351.
Troost, T., Binshtok, U., Sprinzak, D., & Klein, T. (2023). Cis-inhibition suppresses basal Notch signaling during sensory organ precursor selection. Proceedings of the National Academy of Sciences, 120(23), e2214535120.
Thurston, G., & Kitajewski, J. (2008). VEGF and delta-notch: Interacting signalling pathways in tumour angiogenesis. British Journal of Cancer, 99(8), 1204–1209.
Wang, Z., Li, Y., Banerjee, S., & Sarkar, F. H. (2009). Emerging role of Notch in stem cells and cancer. Cancer Letters, 279(1), 8–12.
Xiu, M. X., & Liu, Y. M. (2019). The role of oncogenic Notch2 signaling in cancer. American Journal of Cancer Research, 9(5), 837–854.
Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., & Chu, Q. (2022). Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduction and Targeted Therapy, 7(1), 95.