Raman spectroscopy applied to the study of human red blood cells
Palavras-chave:
Red blood cells, Raman spectroscopy, HemoglobinResumo
Raman spectroscopy is an analytical technique capable of providing detailed information about the molecular structure of biological tissues and fluids. Therefore, this article presents a review of Raman spectroscopy applied in studies with human red blood cells in order to synthesize information about the technological aspects and the Raman spectral characteristics identified by different studies. To this end, a search for articles was carried out in the PubMed, LILACS, SciELO and Cochrane databases, using pre-established descriptors, in the search for articles in Portuguese and English, published in the last ten years and available in full. Literature review articles, studies with whole blood, studies with animal red blood cells, and all those that deviate from the scope of the study are excluded. The results demonstrate that different technologies coupled to the Raman system and different technical ranges are used in the analysis of red blood cells. The discussion presents general aspects of the technique and the Raman spectral characteristics of healthy red blood cells and those altered as a result of diseases and other causes. Raman spectroscopy is versatile and widely used in investigations that require evidence at the molecular level of red blood cells.
Downloads
Referências
Adams, J. Eukaryotic cells possess a nucleus and membrane-bound organelles, in Essentials of Cell Biology, 2005. ed. R. Becker. Cambridge, MA: NPG Education.
Atkins, C. G., et al. Raman Spectroscopy of Blood and Blood Components. Applied spectroscopy, 2017;71(5),767–793. https://doi.org/10.1177/0003702816686593
Barbalato, L.; Pillarisetty, L. S. Histology, Red Blood Cell. Treasure Island (FL): StatPearls Publishing; 2024. Disponível em:https://www.ncbi.nlm.nih.gov/books/NBK539702/
Bhumika, R.; Saurabh, R. Optical Tweezers in Raman Spectroscopy. In book: Raman Spectroscopy, 2024. pag. 123-144. https://doi.org/10.1007/978-981-97-1703-3_6.
Casarin, S. T., et al. Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 2020;10(5), e20104031. https://doi.org/10.15210/JONAH.V10I5.19924
Chen, F., et al. Direct detection of malaria infected red blood cells by surface enhanced Raman spectroscopy. Nanomedicine : nanotechnology, biology, and medicine, 2015;12(6):1445–1451. https://doi.org/10.1016/j.nano.2016.03.001
Dean, L. Blood Groups and Red Cell Antigens. National Center for Biotechnology Information (US), Bethesda (MD), Chapter 4, Hemolytic Disease of the Newborn. 2005. Disponível em: http://www.ncbi.nlm.nih.gov/books/NBK2266
Diniz, J.F., et al. Caracterização do perfil eritrocitário de portadores de anemia falciforme por espectroscopia Raman e microscopia de força atômica. Anais: Encontro Anual da Biofísica UFPE, 2019;54-58. Disponível em: https://pdf.blucher.com.br/biophysicsproceedings/biof%C3%ADsica2019/16.pdf
Ding, et al. Surface-Enhanced Raman Spectroscopy (SERS): General Introduction. 2014. 10.1002/9780470027318.a9276. http://dx.doi.org/10.1002/9780470027318.a9276
Dybas, J., et al. Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques, TrAC Trends in Analytical Chemistry,2022; 146. https://doi.org/10.1016/j.trac.2021.116481.
El Brihi J., Pathak S. Normal and Abnormal Complete Blood Count With Differential. Treasure Island (FL): StatPearls Publishing; 2024. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK604207/
Filho, A. C., et al. Raman spectroscopy for a rapid diagnosis of sickle cell disease in human blood samples: a preliminary study. Lasers in medical science, 2015;30(1):247–253. https://doi.org/10.1007/s10103-014-1635-z
Giri, A.; Tamgadge, S. Red blood cells in health and disease. Journal of Microscopy and Ultrastructure:10.4103/JMAU.JMAU_70_23, 2024. https://doi.org/10.4103/JMAU.JMAU_70_23
Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties, Progress in Crystal Growth and Characterization of Materials, 2007; 53(1): 1-56. https://doi.org/10.1016/j.pcrysgrow.2007.01.001.
Gurkan, U. A. Biophysical and rheological biomarkers of red blood cell physiology and pathophysiology. Current opinion in hematology, 2021;28(3), 138–149. https://doi.org/10.1097/MOH.0000000000000639
Jia, W., et al. Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy. Medicine, 2018;97(39): e12611. https://doi.org/10.1097/MD.0000000000012611
Lenzi, E., et al. Multivariate analysis of mean Raman spectra of erythrocytes for a fast analysis of the biochemical signature of ageing. Talanta, 2021;221, 121442. https://doi.org/10.1016/j.talanta.2020.121442
Lin, J., et al. Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region. Appl. Phys. Lett. 10, 2014; 104(10): 104102. https://doi.org/10.1063/1.4868390
Lukose, J., et al. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study. Biomedical physics & engineering express, 2020;6(1): 015036. https://doi.org/10.1088/2057-1976/ab6e1a
Magnus, R.; Gunnar, E.; Håkan, K. Novel narrow linewidth 785 nm diode laser with enhanced spectral purity facilitates low-frequency Raman spectroscopy. Proc. SPIE 11252, Advanced Chemical Microscopy for Life Science and Translational Medicine, 112521A. 2020. https://doi.org/10.1117/12.2545875
Mithun, N., et al. Human red blood cell behaviour in hydroxyethyl starch: probed by single cell spectroscopy. RSC Adv., 2020; 10(52):31453-31462. http://dx.doi.org/10.1039/D0RA05842D",
Navas-Moreno, M.; Chan, J. W. Laser Tweezers Raman Microspectroscopy of Single Cells and Biological Particles. Methods in molecular biology (Clifton, N.J.), 2018; 1745, 219–257. https://doi.org/10.1007/978-1-4939-7680-5_13
Oliveira, M. A. S., et al. Microespectroscopia Raman para a avaliação de danos em hemácias aprisionadas por pinça óptica, In: XXIV Congresso Brasileiro de Engenharia Biomédica, Uberlândia, 2014.
Paré, G., et al. Synthesizing information systems knowledge: A typology of literature reviews, Information & Management, 2015; 52(2):183-199, https://doi.org/10.1016/j.im.2014.08.008
Pezzotti, G. Raman spectroscopy in cell biology and microbiology. J Raman Spectrosc, 2021;52(12), 2348. https://doi.org/10.1002/jrs.6204
Popp, J.; Schie, I. W. A Short Guide for Raman Spectroscopy of Eukaryotic Cells. Spectroscopy Supplements, 2019, 34(8):18–22. Disponivel em: https://www.spectroscopyonline.com/view/short-guide-raman-spectroscopy-eukaryotic-cells
Sanu, J. S., et al. Micro-Raman spectroscopy study of optically trapped erythrocytes in malaria, dengue and leptospirosis infections. Frontiers in medicine, 2022; 9, 858776. https://doi.org/10.3389/fmed.2022.858776
Wood, B. R.; Tait, B.; McNaughton, D. Caracterização micro-Raman da transição do estado R para T da hemoglobina dentro de um único eritrócito vivo. Biochimica et Biophysica Acta (BBA) - Pesquisa de Células Moleculares, 2021;1539(1-2):58–70. https://doi.org/10.1016/S0167-4889(01)00089-1
Yadav, S.; Deepika, P.; Kumar, M. A Systematic Review of Red Blood Cells Biomarkers in Human Aging. The Journals of Gerontology: Series A, 2024; 79(4). https://doi.org/10.1093/gerona/glae004