Atmospheric aldehydes in indoor and outdoor environments impacted by combustion emissions of diesel/biodiesel mixtures

Aldeídos atmosféricos em ambientes interno e externo impactados por emissões da combustão de misturas diesel/biodiesel

Autores

Palavras-chave:

Carbonyl compounds, Emissions, Fuel blends, HPLC

Resumo

The temporal evolution of air pollutants concentrations inside a semi-closed bus station has been investigated since 2002 until 2023 to understand the impact of direct combustion emissions from buses using diesel/biodiesel fuel blends (B3-B12). Carbonyl compounds concentrations were evaluated, which predominance of acetaldehyde and formaldehyde. It is known that acrolein emission increases with the addition of biodiesel to diesel. However, the determination of acrolein by the official method is compromised due to coelution with acetone on liquid chromatographic separation. In this work, with adaptation of the mobile phase, acrolein was separated adequately and could be determinate in samples obtained in the same bus station while the vehicles had been using B12 fuel blends. Concomitantly, samples were collected outside the station to compare indoor and outdoor air quality. Formaldehyde, acetaldehyde and acrolein were detected in both environments. Aldehydes concentration was higher indoor than outdoors. There are indications that acrolein levels may increase with higher proportions of biodiesel in diesel blends. This study valuable information for future studies on air quality and vehicular emissions.

Downloads

Não há dados estatísticos.

Biografia do Autor

Vitor Bonilha, Universidade Estadual de Londrina, Brasil

Bacharel em Química. Mestre em Química.

Isadora Bieleski, Universidade Estadual de Londrina, Brasil

Bacharel e Licenciada em Química. Mestranda em Química.

Igor Mantovani, Universidade Federal de Santa Maria, Brasil

Bacharel e Licenciado em Química. Mestre em Química. Doutorando em Química.

Referências

BAUER, R., COWAN, D.A., CROUCH, A. Acrolein in wine: Importance of 3-hydroxypropionaldehyde and derivatives in production and detection. Journal of Agricultural and Food Chemistry, v. 58, p. 3243–3250, 2010. https://pubs.acs.org/doi/10.1021/jf9041112.

BRASIL. Resolução CNPE n.º 16, de 29 de outubro de 2018. Dispõe sobre a evolução da adição obrigatória de biodiesel ao óleo diesel vendido ao consumidor final, em qualquer parte do território nacional. Diário Oficial da União, Brasília, DF, 8 de novembro de 2018, Seção 1. https://www.legisweb.com.br/legislacao/?id=369098.

CAHILL, T.M.; OKAMOTO, R.A. Emissions of Acrolein and Other Aldehydes from Biodiesel-Fueled Heavy-Duty Vehicles. Environmental Science & Technology, v. 46, p. 8382– 8388, 2012. https://pubs.acs.org/doi/10.1021/es301659u.

CAO, X.; FEHG, S.; SHEN, X.; LI, X.; YAO, X.; YAO, Z. The effects of biodiesel blends on real-world carbonyl emissions from diesel trucks. Atmospheric Environment, v. 238, p. 117726-117737, 2020. https://doi.org/10.1016/j.atmosenv.2020.117726.

CORRÊA, S.M.; ARBILA, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment, v. 42, p. 769-775, 2008. https://doi.org/10.1016/j.atmosenv.2007.09.073.

DE CARVALHO, A.B.; KATO, M.; REZENDE, M.M.; PEREIRA, P.A.; DE ANDRADE, J.B. Exposure to carbonyl compounds in charcoal production plants in Bahia, Brazil. Environmental Science and Pollution Research, v. 20, p. 1565 – 1573, 2013. https://doi.org/10.1007/s11356-012-1243-z.

GUARIEIRO, L.L.N.; PEREIRA, P.A.P.; TORRES, E.A.; ROCHA, G.O.; DE ANDRADE, J.B. Carbonyl compounds emitted by a diesel engine fueled with diesel and biodiesel–diesel blends: sampling optimization and emissions profile. Atmospheric Environment, v. 42, p. 8211-8218, 2008. https://doi.org/10.1016/j.atmosenv.2008.07.053.

GUARIEIRO, L.L.N.; VASCONCELOS, P.C.; SOLCI, M.C. Poluentes Atmosféricos Provenientes da Queima de Combustíveis Fósseis e Biocombustíveis: Uma Breve Revisão. Revista Virtual de Química, v. 3, p. 434-445, 2011. https://rvq.sbq.org.br/pdf/v3n5a08.

HE, C.; GE, Y.; TAN, J.; YOU, K.; HAN, X.; WANG, J.; YOU, Q.; SHAN, A.N. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel. Atmospheric Environment, v. 43, p. 3657-3661, 2009. https://doi.org/10.1016/j.atmosenv.2009.04.007.

KONAKA, A.; TAGO, T.; YOSHIKAWA, T.; SHITARA, H.; NAKASAKA, Y.; MASUDA, T. Conversion of Biodiesel-Derived Crude Glycerol into Useful Chemicals over a Zirconia−Iron Oxide Catalyst. Industrial & Engineering Chemistry Research, v. 52, p. 15509-15515, 2013. https://doi.org/10.1021/ie4006645.

LIU, R.; LYU, S.; WANG, T. Sustainable production of acrolein from biodiesel-derived crude glycerol over H3PW12O40 supported on Cs-modified SBA-15. Journal of Industrial and Engineering Chemistry, v. 37, p. 354-360, 2016. https://doi.org/10.1016/j.jiec.2016.03.050.

MA. T; DING, J.; LIU, X.; CHEN, G.; ZHENG, J. Gas-phase dehydration of glycerol to acrolein over different metal phosphate catalysts. Korean Journal of Chemical Engineering, v. 37, p. 955-960, 2020. https://doi.org/10.1007/s11814-020-0541-2.

MARTINS, L. D.; SILVA JÚNIOR, C. R.; SOLCI, M. C.; PINTO, J. P.; SOUZA, D. Z.; VASCONCELLOS, P.; GUARIEIRO, A. L. N.; GUARIEIRO, L. L. N.; SOUSA, E. T.; DE ANDRADE, J. B. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel. Environmental Monitoring and Assessment, v. 184, p. 2663-2676, 2012. https://doi.org/10.1007/s10661-011-2142-3.

MASSON, J.; CARDOSO, M.G.; ZACARONI, L.M.; ANJOS, J.P.; SACKZ, A.A.; MACHADO, A.M.R.; NELSON, D.L. Determination of acrolein, ethanol, volatile acidity, and copper in different samples of sugarcane spirits. Ciência e Tecnologia de Alimentos, v. 32, p. 68-72, 2012. http://dx.doi.org/10.1590/S0101-20612012005000075.

MKOMA, Stelyus L.; ROCHA, Gisele O. da; REGIS, Ana Carla D.; DOMINGOS, José S.s.; SANTOS, João V.s.; ANDRADE, Sandro J. de; CARVALHO, Luiz S.; ANDRADE, Jailson B. de. Major ions in PM2.5 and PM10 released from buses: the use of diesel/biodiesel fuels under real conditions. Fuel, [S.L.], v. 115, p. 109-117, jan. 2014. https://doi.org/10.1016/j.fuel.2013.06.044.

NOMI, S.N.; SAKUGAWA, H.; TAKEDA, K.; SOLCI, M.C. Formaldeído e acetaldeído atmosféricos no campus da Universidade de Hiroshima, Japão. Semina: Ciências Exatas e Tecnológicas, v. 31, p. 23-29, 2010.

OCHS, S.M.; ALBUQUERQUE, F.C.; MASSA, M.C.G.P.; NETTO, A.D.P. Evaluation of C1-C13 carbonyl compounds by RRLC-UV in the atmosphere of Niterói City, Brazil. Atmospheric Environment, v. 45, p 5183-5190, 2011. https://doi.org/10.1016/j.atmosenv.2011.06.022.

OCHS, S.M.; FURTADO, L.A.; NETTO, A.D. Evaluation of the concentrations and distribution of carbonyl compounds in selected areas of a Brazilian bus terminal. Environmental Science and Pollution Research, v. 22, p. 9413-9423, 2015. https://doi.org/10.1007/s11356-014-4021-2.

OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT (OEHHA), Air Toxics Hot Spots Program. Risk Assessment Guidelines. Guidance Manual for Preparation of Health Risk Assessments, Air, Community, and Environmental Research Branch Office of Environmental Health Hazard Assessment, 2015. https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf.

PENG, C.Y.; YANG, H.H.; LAN, C.H.; CHIEN, S.M. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric Environment, v. 42, p. 906-915, 2008. https://doi.org/10.1016/j.atmosenv.2007.10.016.

PINTO, J.P.; MARTINS, L.D.; SILVA JUNIOR, C.R.S.; SABINO, F.C.; AMADOR, I.R.; SOLCI, M.C. Carbonyl concentrations from sites affected by emission from different fuels and vehicles. Atmospheric Pollution Research, v. 5, p. 404-410, 2014. https://doi.org/10.5094/APR.2014.047.

PINTO, J.P.; SOLCI, M.C. Comparison of Rural and Urban Atmospheric Aldehydes in Londrina, Brazil. Journal Brazil Chemistry Society, v. 18, p. 928-936, 2007. https://doi.org/10.1590/S0103-50532007000500009.

RIBEIRO, I.; MONTEIRO, A.; LOPES, M. Potential effects of using biodiesel in road-traffic on air quality over the Porto urban area, Portugal. Atmospheric Environment, v. 125, p.78-91, 2016. https://doi.org/10.1016/j.atmosenv.2015.11.006.

SCHIEWECK, A. Very volatile organic compounds (VVOC) as emissions from wooden materials and in indoor air of new prefabricated wooden houses. Building and Environment, v. 190, p. 107537-107565, 2021. https://doi.org/10.1016/j.buildenv.2020.107537.

SEAMAN, V.; BENETT, D.; CAHILL, T. M. Origin, Occurence, and Source Emission Rate of Acrolein in Residential Indoor Air. Environmental Science and Technology, v. 41, p. 6940-6048, 2007. https://pubs.acs.org/doi/10.1021/es0707299.

SHAH, A.N.; YUN-SHAN, G.; JIAN-WEI, T. Carbonyls emission comparison of a turbocharged diesel engine fueled with diesel, biodiesel, and biodiesel diesel blend. Jordan Journal of Mechanical and Industrial Engineering, v. 3, p. 111-118, 2009. https://doi.org/10.1016/j.atmosenv.2009.04.007.

TAVARES, M.; PINTO, J. P.; SOUZA, A. L.; SCARMÍNIO, I. S.; SOLCI, M. C. Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil. Atmospheric. Environment, v. 38, p. 5039-5044, 2004. https://doi.org/10.1016/j.atmosenv.2004.06.020.

US ENVIRONMENTAL PROTECTION AGENCY, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, second ed., TO-11A, EPA/625/R-96/010b. Environmental Protection Agency, Washington, DC. 1999. https://www3.epa.gov/ttn/amtic/files/ambient/airtox/tocomp99.pdf.

WORLD HEALTH ORGANIZATION (WHO), Guidelines for Air Quality, WHO, Geneva, 2021. https://iris.who.int/handle/10665/345329.

ZHU, Y.; FANNING, E.; YU, R.C.; ZHANG, Q.; FROINES, J.R. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atmospheric Environment, v. 45, p. 6526-6533, 2011. https://doi.org/10.1016/j.atmosenv.2011.08.062.

Downloads

Publicado

2024-08-31

Edição

Seção

Articles