Global diversity of Aedes species (Diptera: Culicidae) relevant to public health
Resumo
Mosquito-borne arboviruses represent one of the main challenges for public health today. The Aedes genus includes more than 950 mosquito species, many of which cause discomfort through their bites and are disease vectors. However, little is known about this biodiversity and its role in the context of public health. This study aimed to list the worldwide diversity of mosquitoes belonging to the Aedes genus with the potential to transmit pathogens to humans. An integrative literature review was conducted. The articles were searched during July 2024, in the following databases: Lilacs, Scielo, Science Direct and PubMed. A total of 38 species of mosquitoes belonging to the Aedes genus with the potential to transmit pathogens to humans were listed. The literature consulted reports a total of 44 pathogens potentially transmitted by Aedes mosquitoes, including Dengue, Zika virus, Chikungunya, yellow fever, Rift Valley fever virus, West Nile virus, Ross River virus, Japanese encephalitis virus, Saint Louis encephalitis virus, and equine encephalitis virus. This study provides useful information to support further research and the development of actions to monitor and control mosquito species with vector potential.
Downloads
Referências
ALAN-BARRETT, D.T. Molecular epidemiology of yellow fever virus. Revista Biomedica, v. 21, p. 213–220, 2010. http://www.revbiomed.uady.mx/pdf/rb102138.pdf
ARAGÃO, A. O. et al. New Records of Culicidae Species with Medical Importance in the State of Paraíba, Brazil. Journal of Agricultural Science and Technology, v. 7, p. 363-368, 2017. doi: 10.17265/2161-6256/2017.05.009
BENNETT, K. L. et al. Molecular Differentiation of the African Yellow Fever Vector Aedes bromeliae (Diptera: Culicidae) from Its Sympatric Non-vector Sister Species, Aedes lilii. PLoS Negl Trop Dis, v. 9, n. 12, e0004250, 2015. doi:10.1371/ journal.pntd.0004250
CAMPBELL, L. P. et al. Potential Distribution of Aedes (Ochlerotatus) scapularis (Diptera: Culicidae): A Vector Mosquito New to the Florida Peninsula. Insects, v.3, n. 12, p. 1-15, 2021. doi: 10.3390/insects12030213.
CARLSON, C. J. et al. Uma avaliação ecológica da ameaça pandêmica do vírus Zika . PLoS Negl Trop Dis, v. 10, e0004968, 2016. doi:10.1371/journal.pntd.0004968
CARVALHO, R. G. et al. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz [Internet], v. 109, n. 6, p. 787–96, 2014. https://doi.org/10.1590/0074-0276140304
DELATTE, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Reunion. Vector Borne Zoonotic Dis, v. 10, n. 3, p. 249–58, 2010. doi:10.1089/vbz.2009.0026
ENGERING, A. et al. Pathogen-host-environment interplay and disease emergence. Emerg Microbes Infect, v. 2, n. 2, e5, 2013. doi: 10.1038/emi.2013.5
ESCOBAR, L. E. et al. Declining Prevalence of Disease Vectors Under Climate Change. Sci Rep., v. 6, n. 39150, 2016. doi: 10.1038/s41598-016-0015-2
FISCHER, D. et al. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance, v. 19, p.1–13, 2014. doi: 10.2807/1560-7917.es2014.19.6.20696.
GUARIDO, M. M. et al. Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north-eastern parts of South Africa, 2014–2018. Parasites Vectors, v. 14, n. 339, p.1-14, 2021. https://doi.org/10.1186/s13071-021-04845-9.
GERRARD, S. R. et al. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J Virol, v. 78, n. 16, p. 8922-8926, 2004. doi: 10.1128/JVI.78.16.8922-8926.2004.
GLASSER, C. M.; GOMES, A. C. Clima e sobreposição da distribuição de Aedes aegypti e Aedes albopictus na infestação do Estado de São Paulo. Revista De Saúde Pública, v. 36, n. 2, p. 166–172, 2002. https://doi.org/10.1590/S0034-89102002000200008
HALSTEAD S. B. Dengue in the Americas and Southeast Asia: do they differ? Rev. Panam. Salud Publica, v. 20, p.407–415, 2006. doi: 10.1590/s1020-49892006001100007.
HUANG, Y. The subgenus Stegomyia of Aedes in the Afrotropical region. I. The africanus group of species (Diptera: Culicidae). Contributions of the American Entomological Institute, v. 26, n. 1, p. 3–90, 1990. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA512452.pdf
JANSEN, C. C.; BEEBE N. W. The dengue vector Aedes aegypti: what comes next. Microbes Infect, v. 12, p. 272–279, 2010. doi: 10.1016/j.micinf.2009.12.011.
JIANG, Y.; BURROUGHS, S. Interactive effects of salinity and mosquito larvicides toxicity to larvae of Aedes taeniorhynchus. Journal of the American Mosquito Control Association, v. 40, n. 1, p. 26–31, 2024. https://doi.org/10.2987/23-7151
KAMAL, M. et al. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE, v. 13, n. 12, e0210122, 2018. https://doi.org/10.1371/journal.pone.0210122
KAMGANG, B. et al. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Research, v. 3, p. 1-18, 2018. https://doi.org/10.12688/wellcomeopenres.14659.3
KAMPEN, H.; WERNER, D. Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) becomes invasive. Parasites Vectors, v. 7, n. 59, p. 1-10, 2014. https://doi.org/10.1186/1756-3305-7-59
KAY, B. H. Three modes of transmission of Ross River virus by Aedes vigilax (Skuse). Aust J Exp Biol Med Sci, v. 60, n. 3, p. 339-344, 1982. doi: 10.1038/icb.1982.37.
KILPATRICK, A. M. et al. West Nile Virus Epidemics in North America Are Driven by Shifts in Mosquito Feeding Behavior. PLoS Biol., v. 4, n. 4, e82, 2006. DOI: 10.1371/journal.pbio.0040082
KOBAYASHI, A. M. et al. Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by geographical information system. Journal of Medical Entomology, v. 39, p. 4–11, 2002 . https://doi.org/10.1603/0022-2585-39.1.4
KRAEMER, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol, v. 4, p. 854–863, 2019. https://doi.org/10.1038/s41564-019-0376-y
LAPORTA, G. Z. et al. Global Distribution of Aedes aegypti and Aedes albopictus in a Climate Change Scenario of Regional Rivalry. Insects, v. 14, p. 1-18, n. 49, 2023. https://doi.org/ 10.3390/insetos14010049
LEDERMANN, J. P. et al. Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses. PLoS Negl Trop Dis., v. 8, n. 10, e3188, 2014. doi:10.1371/journal.pntd.0003188
LEISNHAM, P. T.; JULIANO, S. A. Impacts of climate, land use and biological invasion on the ecology of immature Aedes mosquitoes: implications for the emergence of La Crosse. EcoHealth, v. 9, n. 2, p. 217–28, 2012. DOI: 10.1007/s10393-012-0773-7
LIANG, G. et al. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg Microbes Infect, v. 4, n. 3, e18, 2015. doi: 10.1038/emi.2015.18
LINDSTRÖM, A. et al. Different Hatching Rates of Floodwater Mosquitoes Aedes sticticus, Aedes rossicus and Aedes cinereus from Different Flooded Environments. Insects, v. 12, n. 279, p. 1-9, 2021. https://doi.org/10.3390/insects12040279
MARCONDES, C. B.; TAUIL, P. L. Dengue silvestre: devemos nos preocupar?. Rev Soc Bras Med Trop [Internet]. v. 44, n. 2, p. 263–274, 2011. Available from: https://doi.org/10.1590/S0037-86822011000200029
MEDLOCK, J. M. et al. Possible ecology and epidemiology of medically important mosquito-borne arboviruses in Great Britain. Epidemiol Infect., v. 135, n. 3, p. 466-482, 2007. doi: 10.1017/S0950268806007047.
MENDES, K. D. S. et al. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto Contexto Enfermagem, v. 17, p. 758-64, 2008. doi: 10.1590/S0104-07072008000400018
MERCER, D. R. et al. Monitoring temporal abundance and spatial distribution of Aedes polynesiensis using BG-Sentinel traps in neighboring habitats on Raiatea, Society Archipelago, French Polynesia. J Med Entomol., v. 49, n. 1, p. 51-60, 2012. doi: 10.1603/me11087.
MOHAMED, A. H. et al. Mosquitos Aedes na República do Sudão, com chaves dicotômicas para os estágios adulto e larval. Journal of Natural History, v. 51, n. 9–10, p. 513–529, 2017. https://doi.org/10.1080/00222933.2017.1285069
MONDET, B. Importance d´Aedes (Diceromyia) furcifer Edwards, 1913 (Diptera: Culicidae) Parmi Les Vecteurs Potentiels d'Arboviroses, dans l'Épidémiologie de la Fièvre Jaune en Savane Sub-Soudanienne de Côte-d'Ivoire. Annales de La Société Entomologique de France (NS), v. 33, n. 1, p. 47–54, 1997. https://doi.org/10.1080/21686351.1997.12279177
MONTEIRO, V. V. S. et al. Aedes-Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection. Front Microbiol., v. 9, n. 10, p. 1-13, 2019. doi: 10.3389/fmicb.2019.00492.
MORITZ, U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. eLife, v. 4, e08347, 2015. https://doi.org/10.7554/eLife.08347
MUTISYA, J. et al. Evaluating the vector competence of Aedes simpsoni sl from Kenyan coast for Ngari and Bunyamwera viruses. PLoS ONE, v. 16, n. 7, e0253955, 2021. https://doi.org/ 10.1371/journal.pone.0253955
NAGY, N. A. et al. The updated genome of the Hungarian population of Aedes koreicus. Sci Rep, v. 14, n. 7545, 2024. https://doi.org/10.1038/s41598-024-58096-6
NASIR, S. et al. A study on the role of Aedes mosquitoes in arboviruses and SARS-CoV-2 infection: A new challenge. J King Saud Univ Sci., v. 34, n. 6, p. 1-8, 2022. doi: 10.1016/j.jksus.2022.102179.
NEJATI, J. et al. The monsoon-associated equine South African pointy mosquito ‘Aedes caballus’; the first comprehensive record from southeastern Iran with a description of ecological, morphological, and molecular aspects. PLoS ONE, v. 19, n. 5, e0298412, 2024. https://doi.org/10.1371/journal.pone.0298412
NEW ZEALAND. New Zealand Miosecure: Aedes australis. 2007, 4 p. Available at: https://www.smsl.co.nz/site/southernmonitoring/files/NZB/Ae.%20australis%20new%20profile%2007.pdf
NÚÑEZ, A. I. et al. European Aedes caspius mosquitoes are experimentally unable to transmit Zika virus. Parasites Vectors, v. 2, n. 363, p. 1-7, 2019. https://doi.org/10.1186/s13071-019-3620-7
OCHIENG, C. et al. Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007–2012. Virol J., v. 10, n. 140, p. 110–140, 2013. https://doi.org/10.1186/1743-422X-10-140
OLIVEIRA, S. et al. Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci Rep., v. 11, n. 9916, p. 1-9, 2021. https://doi.org/10.1038/s41598-021-89096-5
PADONOU, G. G. et al. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop. Med. Infect. Dis., v. 8, n. 9, p. 1-17, 2023. https://doi.org/10.3390/tropicalmed8090439
PAUPY, C. et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in central Africa. Vector Borne Zoonotic Dis., v. 10, p. 259–266, 2010. DOI: 10.1089/vbz.2009.0005
PATZ, J. A. Dengue Epidemic Potential as Projected by General Circulation Global Climate Models Change. Environ Health Perspect., v. 106, p. 1-7, 1998. DOI: 10.1289/ehp.98106147
POUNGOU, N. et al. Mosquito-Borne Arboviruses Occurrence and Distribution in the Last Three Decades in Central Africa: A Systematic Literature Review. Microorganisms, v. 12, n. 4, p. 1-37, 2024. https://doi.org/10.3390/microorganisms12010004
LIU, Q. et al. The predicted potential distribution of Aedes albopictus in China under the shared socioeconomic pathway (SSP)1–2.6, Acta Tropica, v. 248, 107001, 2023. https://doi.org/10.1016/j.actatropica.2023.107001.
ROSS, R.; GILLETT, J. The cyclical transmission of yellow fever virus through the Grivet monkey, Cercopithecus aethiops centralis Neumann, and the Mosquito Aedes (Stegomyia) africanus Theobald. Annals of Tropical Medicine and Parasitology, v. 44, n. 4, 351, 1950. doi:10.1080/00034983.1950.11685460
RYAN, S. J. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis., v. 13, n. 3, e0007213, 2019. https://doi.org/10.1371/journal.pntd.0007213
SANG, R. et al. Evolving dynamics of Aedes-borne diseases in Africa: a cause for concern. Current Opinion in Insect Science, v. 53, 100958, 2022, https://doi.org/10.1016/j.cois.2022.100958
SANG, R. et al. Effects of Irrigation and Rainfall on the Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-Prone Tana River County, Kenya. Journal of medical entomology. v. 54, n. 2, p. 460–470, 2017. https://doi.org/10. 1093/jme/tjw206
SCHAFFNER, F. et al. VBORNET gap analysis: mosquito vector distribution models utilised to identify areas of potential species distribution in areas lacking records. Open Health Data., v. 4, 201, 2017. doi: 10.5334/ohd.27.
SEMPALA, S. Some laboratory observations on the biology of Aedes (Stegomyia) africanus. Insect science and its application., v. 2, n. 3, p. 189–195, 1981. doi:10.1017/s1742758400001004
SHEPHERD, J. G. et al. Emerging Rhabdoviruses and Human Infection. Biology, v. 12, p. 1-12, 2023. https://doi.org/10.3390/biology12060878
SOUZA, D. R. et al. Field methods for the study of ants in sugarcane plantations in Southeastern Brazil. Scientia Agricola, v. 67, p. 651-657, 2010. https://doi.org/10.1590/S0103-90162010000600006
STAPLES, K. et al. Development of a regional climate change model for Aedes vigilax and Aedes camptorhynchus (Diptera: Culicidae) in Perth, Western Australia. Bulletin of Entomological Research, v. 114, p. 8–21, 2024. https://doi.org/10.1017/ S0007485323000561
TANTELY, M. L. et al. An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar. Parasite, v. 23, p. 1-42, 2016.
https://doi.org/10.1051/parasite/2016018
TOLLE, M. A. Mosquito-borne Diseases. Curr Probl Pediatr Adolesc Health Care., v. 39., n. 4, p.97–140, 2009. https://doi.org/10.1016/j.cppeds.2009.01.001
VARGAS-ESPINOSA, J. H.; AGUIRRE-OBANDO, O. A. Global phylogeography of the flood mosquito, Aedes vexans (Diptera: Culicidae), from mitochondrial DNA. Zoologia (Curitiba), 39, e21029, 2022. https://doi.org/10.1590/S1984-4689.v39.e21029
WINT, W. Past, present and future distribution of the yellow fever mosquito Aedes aegypti: The European paradox. Sci Total Environ., v. 15, n. 847, 157566, 2022. doi: 10.1016/j.scitotenv.2022.157566.
WRBU. Walter Reed Biosystematics Unit. Site da Walter Reed Biosystematics. 2024. Available at: http://wrbu.si.edu/vectorspecies/mosquitoes
WEETMAN, D. et al. Mosquitos Aedes e arbovírus transmitidos pelo Aedes na África: ameaças atuais e futuras. Int. J. Environ. Res. Public Health., v. 15, n. 2, 220, 2018. https://doi.org/10.3390/ijerph15020220
WHO. World Health Organization. The top 10 causes of death: The 10 leading causes of death in the world 2011 2000 and 2011. 2024. Available at: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death