Aspects of roller press for the comminution of crushed iron ores

Aspectos da prensa de rolos na cominuição de minérios de ferro

Autores

Palavras-chave:

grindability, carbon footprint, compact itabirite, HPGR

Resumo

Mining industries have faced a huge challenge to reduce cost, especially, in ore comminution that can reach more than 60 % of the total power consumption of mineral beneficiation plants. High-pressure grinding rolls (HPGR) has been used as an alternative when combined with the traditional autogenous or semi-autogenous (AG/SAG) grinding mill in the comminution of run-of-mine iron ores.  Four similar pilot scale runs were performed in a closed circuit in order to evaluate the impact of HPGR processing on subsequent grinding for different lithologies. A considerable decrease in power consumption for the grinding process was observed after HPGR comminution. Furthermore, a good coefficient of determination (R² > 0.84) was observed between the Bond work index (WI) of the fresh feed and the WI of the HPGR product. This leads to a significant decrease in operational and capital expenditures (OPEX and CAPEX). Since the energy consumption has impact on carbon dioxide emissions, adopting this unit operation prior to conventional grinding reduces greenhouse gas emissions.

Downloads

Não há dados estatísticos.

Biografia do Autor

Juscelino Prado, Petróleo Brasileiro S. A. — Petrobras

Possui graduação em Engenharia Metalúrgica pela Universidade Federal de Minas Gerais (2011) e Mestrado em Engenharia de Materiais pelo CEFET-MG (2020). Tem experiência na área de Engenharia de Materiais, Metalúrgica e Mineração, atuando principalmente nos seguintes temas: beneficiamento mineral, metalurgia física, controle de processo. Doutoramento no Programa de Pós-Graduação em Engenharia Mineral (conclusão em agosto de 2024). Engenheiro de segurança de trabalho na Petróleo Brasileiro S. A. — Petrobras.

José Aurélio da Luz, Universidade Federal de Ouro Preto

Full Professor at the School of Mines of the Federal University of Ouro Preto. He holds a mining engineering degree from the School of Mines of the Federal University of Ouro Preto (UFOP, 1981), a master's degree and a doctorate from the Federal University of Minas Gerais (UFMG, 1987 and 1996). With many years of previous experience in the industrial sector, he has experience in physical and physical-chemical methods for concentrating ores and reusing waste, working mainly on the following topics: interfacial phenomena, process development in mineral technology, circuit design and sizing, mathematical modeling of processes, dynamics of granular media and development of mineral-based chemical processes. He has developed innovative processes including, for example: a process for reducing zinc from steel waste; a bioactivated autocatalytic sintering process; a formulation of a new blowing agent for dismantling or demolition; and a new process for the heterogeneous catalysis of biodiesel from mineral-based inputs. At the UFOP School of Mines, he was head of the Mining Engineering Department. He was coordinator of the Postgraduate Program in Mineral Engineering (PPGEM/UFOP). For several years, he was a member of the Structuring Teaching Nucleus of the Mining Engineering course. He is also a founding partner of Jornada Lúcida Editora and two companies linked to the mining sector. Coordinator of the UFOP School of Mines Embrapii Unit.

***************

Professor titular da Escola de Minas da Universidade Federal de Ouro Preto. É engenheiro de minas pela Escola de Minas da Universidade Federal de Ouro Preto (UFOP, 1981), mestrado e doutoramento pela Universidade Federal de Minas Gerais (UFMG, 1987 e 1996). Com muitos anos de vivência prévia no setor industrial, tem experiência em métodos físicos e físico-químicos de concentração de minérios e reaproveitamento de resíduos, atuando principalmente nos seguintes temas: fenômenos interfaciais, desenvolvimento de processos em tecnologia mineral, projeto e dimensionamento de circuitos, modelagem matemática de processos, dinâmica de meios granulares e desenvolvimento de processos químicos de base mineral. Tem desenvolvido processos inovadores englobando, por exemplo: processo de diminuição de zinco de resíduos siderúrgicos; um processo de sinterização autocatalítica bioativada, uma formulação de novo agente expansivo para desmonte ou demolição e um novo processo de catálise heterogênea de biodiesel a partir de insumos de base mineral. Na Escola de Minas da UFOP, exerceu a chefia do Departamento de Engenharia de Minas. Foi coordenador do Programa de Pós-Graduação em Engenharia Mineral (PPGEM/UFOP). Foi, por vários anos, do Núcleo Docente Estruturante do curso de Engenharia de Minas. Ademais disso, é sócio fundador da Jornada Lúcida Editora e de duas empresas ligadas ao setor de mineração. Coordenador da Unidade Embrapii UFOP Escola de Minas.

Referências

ABAZARPOOR, A. et al. HPGR effect on the particle size and shape of iron ore pellet feed using response surface methodology. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, v. 127, n. 1, p. 40–48, 2018.

ABAZARPOOR, A.; HALALI, M. Investigation on the particle size and shape of iron ore pellet feed using ball mill and HPGR grinding methods. Physicochemical Problems of Mineral Processing, v. 53, n. 2, p. 908–919, 2017.

ABAZARPOOR, A.; HALALI, M.; Hejazi, R. & SAGHAEIAN, M. HPGR effect on the particle size and shape of iron ore pellet feed using response surface methodology. Mineral Processing and Extractive Metallurgy, 127:1, 40-48, 2018. DOI: 10.1080/03719553.2017.1284414

ALVES, V. K.; SCHNEIDER, C. L.; DUQUE, T. B.; MAZZINGHY, D.; PERES, A. E. Sample requirements for HPGR testing procedure. Minerals Engineering, v. 73, 2015, pp.: 31–38. Doi: https://doi.org/10.1016/j.mineng.2014.12.007.

AMIRI, S. H. & ABADI, M. I.-Y. Grinding iron ore concentrate by using HPGR and ball mills and their effects on pelletizing and reduction stages - a pilot-scale study, Canadian Metallurgical Quarterly, 61:4, 442-453. 2022. DOI: 10.1080/00084433.2022.2052522

CAMPOS, T., BUENO, G., BARRIOS, G., & TAVARES, L. Pressing iron ore concentrate in a pilot-scale HPGR. Part 2: Modeling and simulation. Minerals Engineering. 2019. https://doi.org/10.1016/J.MINENG.2019.105876.

DANIEL, M. J. & MORELL, S. HPGR model verification and scale-up. Minerals Engineering, V. 17, Issues 11–12. 2004. Pp: 1149-1161 , https://doi.org/ 10.1016/j.mineng.2004.05.016.

DOLL, A. & NIKOLIĆ, V. Secrets of the Bond ball mill grindability test. In: 18a Conferencia Internacional de Procesamiento de Minerales y Geometalurgia Anais.... Santiago: Gecamin, 2022. Disponível em: <https://www.researchgate.net/publication/372393426_Secrets_of_the_Bond_Ball_mill_grindability_test>. Acesso em: 17 jul. 2024

FERREIRA, K. C. et al. Efeito do escalpe no work index de bond. Holos, v. 7, p. 59–64, 24 dez. 2015.

GHORBANI, Y; MAINZA, A.N.; PETERSEN, J.; BECKER, M.; FRANZIDIS, J-P.; KALALA, J.T. Investigation of particles with high crack density produced by HPGR and its effect on the redistribution of the particle size fraction in heaps. Minerals Engineering. Volumes 43 – 44, Pp: 44-51. 2013. https://doi.org/10.1016/j.mineng.2012.08.010.

KELLERWESSEL, H. High-pressure material-bed comminution in practice. Translation ZKG, v. 2, p. 90, 1990.

KODALI, P. et al. Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching. Minerals Engineering, v. 24, n. 13, p. 1478–1487, 2011.

MAN, Y. T. Why is the Bond ball mill grindability test done the way it is done? [Technical Note]. The European Journal of Mineral Processing and Environmental Protection, v. 2, No. 1, 1303-0868, 2002, pp. 34-39. Disponível em: <https://www.911metallurgist.com/blog/wp-content/uploads/2015/12/Why-is-the-Bond-Ball-Mill-Grindability-Test-done-the-way-it-is-done.pdf>. Acesso em: 17 jul. 2024.

MEER, F. P. VAN DER; LEITE, I. A. Aspects of HPGR in: Iron Ore Pellet Feed Preparation. p. 102–115, 2018.

MICHAUD, D. High-pressure grinding rolls. 911metallurgist — Process Equipment, 28 jul. 2020. Disponível em: <https://www.911metallurgist.com/equipment/high-pressure-grinding-rolls/>. Access: 21 jun. 2024

MORRELL, S. Helping to reduce mining industry carbon emissions: A step-by-step guide to sizing and selection of energy efficient high-pressure grinding rolls circuits. Minerals Engineering, v. 179, p. 107431, mar. 2022.

OLIVEIRA, R.; DELBONI JÚNIOR, H.; BERGERMAN, M. G. Performance analysis of the HRCTMHPGR in the pilot plant. Revista Escola de Minas, v. 69, n. 2, p. 227–232, 2016.

PODCZECK, F. & NEWTON, J. M. The evaluation of a three-dimensional shape factor for the quantitative assessment of the sphericity and surface roughness of pellets International Journal of Pharmaceutics.Volume 124, Issue 2, 3 October 1995, Pages 253-259.

RIBEIRO, F. S.; RUSSO, J. F. C., & COSTA, T. Aplicação de prensas de rolos em minério de ferro. REM — Revista Escola de Minas, 63(2), 399–404. 2010. https://doi.org/10.1590/s0370-44672010000200027.

SADANGI, J. K. & DAS, S. P. Potential of High-Pressure Grinding Roll (HPGR) for Size Reduction of Hard Banded Iron Ore. Transactions of the Indian Institute of Metals, v. 75, n. 7, p. 1797–1811, 2022.

SARAMAK, D. & LEŚNIA, K. Impact of HPGR operational pressing force and material moisture on energy consumption and crushing product fineness in high-pressure grinding processes. Energy, v. 302, 2024, 131908, https://doi.org/10.1016/j.energy. 2024. 131908.

SCHNEIDER, C. L.; ALVES, V. K.; AUSTIN, L. G. Modeling the contribution of specific grinding pressure for the calculation of HPGR product size distribution. Minerals Engineering, v. 22 (2009), pp.: 642–649.

SELMI, M.; LAGOEIRO, L. E.; ENDO, I. Geochemistry of hematitite and itabirite, Quadrilátero Ferrífero, Brazil. REM: Revista Escola de Minas, v. 62, n. 1: 35-43, jan. mar. 2009. Doi: http://dx.doi.org/10.1590/S0370-44672009000100006.

XINRAN, Z. et al. Novel Technology for Comprehensive Utilization of Low-Grade Iron OreBaselMinerals, 2022. Disponível em: <https://doi.org/10.3390/min12040493>

Downloads

Publicado

2024-08-16

Edição

Seção

Articles