Influence of nitrogen fertilization and seed density on rice blast severity in soils with different organic matter contents

Influência da adubação nitrogenada e densidade de sementes na severidade à brusone no arroz em solos com diferentes teores de matéria orgânica

Autores

Resumo

In this study, the effect of nitrogen fertilization and seeding density on the Area Under Disease Progress Curve (AUDPC) of rice blast disease was evaluated in irrigated areas with varying levels of organic matter. The experiment was conducted in two regions of Tocantins, Brazil (2022-2023), using a randomized block design (RBD) in a factorial arrangement of 5 nitrogen doses (DN) (Urea 45%, applied topically at rates of 0 (control), 19, 59, 100, 150 kg N ha-1) × 4 seed densities (DS) (50, 75, 100, 125 kg ha-1) × 2 cultivars (BRS A704 and BRS A706 CL), with 4 replications. Additionally, 230 kg ha-1 of 05-25-15 NPK fertilizer was applied at seeding. In the field, disease progress on leaves and panicles was monitored, while in the laboratory, panicle count and rice yield were recorded. The AUDPC results from the experimental areas revealed that in Formoso do Araguaia (FMA), nitrogen doses above 100 kg N ha-1 and in Lagoa da Confusão (LdaC), starting from 59 kg N ha-1, along with seed densities above 75 kg ha-1, significantly influenced the progression of rice blast disease. It is concluded that nitrogen excess, coupled with local climatic conditions, played a crucial role in disease intensity in rice.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luis Oswaldo Viteri Jumbo , Universidade Federal do Tocantins, Brasil

Professor na Universidade Federal do Tocantins, Brasil.

Layane Carmem Arruda da Rocha, Universidade Federal de Viçosa - MG, Brasil

Doutoranda em engenharia agrícola pela Universidade Federal de Viçosa - MG, Brasil

Paulo Ricardo de Sena Fernandes, Universidade Federal do Tocantins, Brasil

Doutorando em produção vegetal pela Universidade Federal do Tocantins, Brasil

João Victor de Almeida Oliveira, Universidade Federal do Tocantins, Brasil

Graduando em agronomia pela Universidade Federal do Tocantins, Brasil

David Ingsson Oliveira Andrade de Farias, Universidade Federal do Tocantins, Brasil

Doutor em produção vegetal pela Universidade Federal do Tocantins, Brasil

Raimundo Nonato Carvalho Rocha, Embrapa Arroz e Feijão - Fitotecnia

Pesquisador na Embrapa Arroz e Feijão - Fitotecnia

Inocencio Júnior de Oliveira , Embrapa Arroz e Feijão - Melhoramento Genético Vegetal

Pesquisador na Embrapa Arroz e Feijão - Melhoramento Genético Vegetal

Marcos Vinicius Giongo Alves, Universidade Federal do Tocantins, Brasil

Professor titular pela Universidade Federal do Tocantins, Brasil

Gil Rodrigues dos Santos, Universidade Federal do Tocantins, Brasil

Professor titular pela Universidade Federal do Tocantins, Brasil

Referências

AKRAM, R. et al. Chapter 4 - Plant Growth and Morphological Changes in Rice Under Abiotic Stress. Em: HASANUZZAMAN, M. et al. (Eds.). Advances in Rice Research for Abiotic Stress Tolerance. [s.l.] Woodhead Publishing, 2019. p. 69–85.

Bhardwaj, N. R. et al. Multi-location evaluation of fungicides for managing blast (Magnaporthe grisea) disease of forage pearl millet in India. Crop Protection, v. 159, September, 2022. DOI: https://doi.org/10.1016/j.cropro.2022.106019

BAHUGUNA, R. N.; JAGADISH, S. K.; COHEN, D. M.; TALUKDAR, A.; MARATHU, P.; SOMI, S.; SHASHIDHAR, H. E.; ISMAIL, A. M.; JULIE, P. F. High night temperature and spikelet sterility in rice (Oryza sativa L.): The role of assimilate supply and N demand. Plant Physiology, v. 173, n. 4, p. 234-245, 2017. Disponível em: https://academic.oup.com/plphys/article/188/1/285/6395367.

BRASIL (2009) Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária., Brasília, DF: Mapa/ACS

CAI, Siyuan, Xu Zhao, Cameron M. Pittelkow, Mingsheng Fan, Xin Zhang, and Xiaoyuan Yan. "Optimal nitrogen rate strategy for sustainable rice production in China." Nature 615 (2023): 73-79. Disponível: https://doi.org/10.1038/s41586-023-05744-7.

CIAT - Centro Internacional de Agricultura Tropical, Sistema de evaluación estandar para arroz. 1983. p. 61. Cali, Colômbia. Disponível: https://cgspace.cgiar.org/items/a7b28e66-3ee8-47f4-92bf-64e413b7abb3

COUNCE, P.A.; KEISLING, T. C.; MITCHELL, A.L. A uniform and adaptive system for expressing rice development Crop Science, Madison, v, 40, p. 436-443. 2000.

COLOMBARI FILHO, J. M.; RANGEL, P. H. N.; BRESEGHELLO, F.; FRAGOSO, D. B.; CORDEIRO, A. C. C.; ABREU, G. B.; PEREIRA, J. A. EMBRAPA – GOÍAS. BRS A704: seleção recorrente gera cultivar de arroz irrigado de base genética ampla. 2019.

CHEN, S.-L.; HUANG, C.-H. Effects of Azotobacter and Carbon Dioxide Concentrations on the Growth and Yield of Rice Plants Grown in Two Paddy Soils. Agronomy, v. 13, n. 12, p. 2998, dez. 2023.

CHEN, Y. et al. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition. Environmental and Experimental Botany, v. 190, p. 104585, 1 out. 2021.

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento de safra brasileiro – grãos: 6° Levantamento – safra 2023/2024. Brasília: Companhia Nacional de Abastecimento, 2023. Disponível: < file:///D:/USUARIO/Downloads/V2_ApresentacaoZ6ZLevZSafraZGraos.pdf >.

DONGLING, J. et al. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage. Rice Science, v. 30, n. 6, p. 598–612, 1 nov. 2023.

FAO - FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. OEDC-FAO Agricultural Outlook 2023-2032. FAO, 2023. Disponível: https://openknowledge.fao.org/handle/20.500.14283/cc6361en.

FARIA, L. C.; SILVA, F. M.; SOUZA, M. A.; et al. Efeito das doses de nitrogênio no percentual de grãos inteiros das cultivares BRS Primavera e BRS Sertaneja. Revista Brasileira de Ciência do Solo, v. 44, p. 1-10, 2020.

FEI W. et al. Combined return of rice straw and organic fertilizer to yellow-mud paddy soil to improve the rice productivity and substitute chemical fertilizers. Chinese Journal of Eco-Agriculture, v. 29, n. 12, p. 2024–2033, 2021.

FIDELIS, R. R. et al. EFICIÊNCIA DO USO DE NITROGÊNIO EM GENÓTIPOS DE ARROZ DE TERRAS ALTAS. Pesquisa Agropecuária Tropical, p. 124–128, 28 mar. 2012.

FILIPPI, M.C.; PRABHU, A.S. Relationship between panicle blast severity and mineral nutrient content of plant tissue in upland rice. Journal of Plant Nutrition, v. 21, n. 8, p.15771587, 1998.

FILIPPI, M. C. et al. Induction of resistance to rice leaf blast by avirulent isolates of Magnaporthe oryzae. Revista de Ciências Agrarias - Amazon Journal of Agricultural and Environmental Sciences, v. 57, n. 4, p. 388–395, 2014.

FOX, Tim et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnology Journal, [S.l.], v. 15, n. 3, p. 385-393. 2017. Disponível: https://doi.org/10.1111/pbi.12689

FREITAS, J. G. DE et al. Adubação nitrogenada e incidência de brusone em arroz de sequeiro. Bragantia, v. 69, p. 173–179, 2010.

FRONTINI, M. et al. Genome-wide association of rice response to blast fungus identifies loci for robust resistance under high nitrogen. BMC Plant Biology, v. 21, n. 1, p. 1–12, dez. 2021.

GU, J. Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity. Agronomy, v. 13, n. 10, 2023. Disponível: https://doi.org/10.3390/agronomy13102495.

GUO, Nan; GU, Mingji; HU, Jinqi; QU, Hongye; XU, Guohua. Funções do OsLHT1 do arroz na alocação de nitrogênio da folha para a panícula para rendimento e qualidade de grãos. Frontiers in Plant Science, [s.l.], v. 11, p. 1150, 2020. Disponível: https://doi.org/10.3389/fpls.2020.01150.

GHOLIZADEH, A.; SABERIOON, M.; BORŮVKA, L.; WAYAYOK, A.; MOHD S.; Mohd A. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture, v. 4, n. 4, p. 259-268, dez. 2017.

GMACH, M. R. et al. Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola, v. 77, p. e20180164, 5 set. 2019.

HUANG, H. et al. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast. Frontiers in Plant Science, v. 8, 28 fev. 2017.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. LSPA - Levantamento Sistemático da Produção Agrícola. IBGE, 2024. Disponível em: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html.

INMET - Instituto Nacional de Meteorologia Boletim Climatológico Anual. Brasília: 2023. Disponível em: https://portal.inmet.gov.br/boletim-climatologico-anual. Acesso em: 17 jul. 2024.

ISHIBASHI, Yushi et al. Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environmental and Experimental Botany, v. 97, p. 49-54, jan. 2014. Disponível em: https://doi.org/10.1016/j.envexpbot.2013.08.005.

JIANG, H. et al. Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. Rice, v. 13, n. 1, p. 31, 1 jun. 2020.

KIM, B. R.; CHO, Y. C. The impact of temperature changes on the development of rice blast, and the effect of ultraviolet rays on sporulation. Climatic Change, v. 142, p. 155-167, 2016.

KADOTANI, N.; AKAGI, A.; TAKATSUJI, H.; MIWA, T.; IGARASHI, D. Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biol., v. 16, p. 60, 2016. Disponível 10.1186/s12870-016-0748-x.

KUNOVA, A.; PIZZATTI, C.; CORTESI, P. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest Management Science, v. 69, p. 278-284, 2013.

LEE, Sichul. Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy, [S.l.], v. 11, n. 4, p. 753, 2021. Disponível: https://doi.org/10.3390/agronomy11040753.

LI, Qiu-Ping et al. Shading decreases rice yield by impeding grain-filling progress after heading. Agronomy Journal, jul. 2020. Disponível: https://doi.org/10.1002/agj2.20372.

LONG, D. H.; LEE, F. N.; TEBEEST, D. O. Effect of Nitrogen Fertilization on Disease Progress of Rice Blast on Susceptible and Resistant Cultivars. Plant Disease, v. 84, n. 4, p. 403-409, 2000.

MAINA, A. W.; BECKER, M.; OERKE, E. C. Assessing Interactions between Nitrogen Supply and Leaf Blast in Rice by Hyperspectral Imaging. Remote Sensing, v. 16, n. 6, 2024. Disponível: https://doi.org/10.3390/rs16060939.

MARSCHNER, H. Mineral Nutrition of Higher Plants. 2ª ed. London: Academic Press, 1995.

MARTINS, J. F. da S.; MATTOS, M. L. T.; SILVA, F. F. da; BÜTTOW, G. T. Teor residual de fipronil no solo para o controle de Oryzophagus oryzae em cultivos subsequentes de arroz irrigado. Pesquisa Agropecuária Brasileira, Brasília, v. 52, n. 4, p. 228-235, abr. 2017. DOI: 10.1590/S0100-204X2017000400002.

MARTINS, B. E. D. M. et al. Characterization of bacterial isolates for sustainable rice blast control. Revista Caatinga, v. 33, p. 702–712, 7 set. 2020.

MARZARIN, A. et al. Influência da densidade de plantio no número de panículas por metro quadrado (NPM) em arroz irrigado. Pesquisa Agropecuária Brasileira, Brasília, v. 42, n. 3, p. 100-107, mar. 2007.

MONTES, C.; HUSSAIN, SK. G.; KRUPNIK, T. J. Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. International Journal of Biometeorology, v. 66, n. 11, p. 2237–2249, nov. 2022.

OLIVEIRA, L. M. DE et al. Occurrence of rice blast on and grain quality of irrigated rice fertilized with nitrogen and silicates. Pesquisa Agropecuária Brasileira, v. 54, p. e00295, 29 ago. 2019.

PEREZ-NADALES, E. et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, v. 70, p. 42–67, 1 set. 2014.

RANGEL, Paulo Hideo Nakano et al. EMBRAPA. BRS A706CL: cultivar de arroz de terras altas com resistência múltipla e alto potencial de rendimento de grãos. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2022. Disponível: https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/1144266/1/ct263.pdf.

SAIDY, A. R. et al. Microbial degradation of organic carbon sorbed to phyllosilicate clays with and without hydrous iron oxide coating. European Journal of Soil Science, v. 66, n. 1, p. 83–94, jan. 2015.

SANTOS, G. R.; SABOYA, L. M. F.; RANGEL, P. H. N.; OLIVEIRA-FILHO, J. C. Resistência de genótipos de arroz a doenças no sul do Estado do Tocantins. Bioscience Journal, 2002, v.18, p.3-12.

SANTOS, G. R. D. et al. Reação a doenças e caracteres agronômicos de genótipos de arroz de várzeas no estado do tocantins. Agropecuária Técnica, 2005.

SABERIOON, M. M.; AMIN, M. S. M.; AIMRUN, W.; ANUAR, A. R.; GHOLIZADEH, A. Multi-Spectral Images Tetracam Agriculture Digital Camera to Estimate Nitrogen and Grain Yield of Rice at Different Growth Stages. Philipp. Agric. Scientist, v. 96, n. 1, p. 116-121, mar. 2013.

SEIFI, H. S.; VAN BOCKHAVEN, J.; ANGENON, G.; HÖFTE, M. Glutamate metabolism in plant disease and defense: friend or foe? Mol. Plant Microbe Interact., v. 26, p. 475–485, 2013. Disponível: 10.1094/mpmi-07-12-0176-cr.

SHANER, G.; FINNEY, R. E. The effect of nitrogen fertilization on the expression of slow mildewing resistance in knox wheat. Phytopathology, 1977, v.67, p.1051-1056.

SHI, W. et al. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crops Research, Climate-ready rice: adaptive traits and management practices for resilient rice-based systems (Part-1). v. 190, p. 18–25, 1 abr. 2016.

SINGH, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, v. 21, n. 10, p. 640–656, out. 2023.

SOARES, L. C. DA S. et al. Blast disease in rice culture. Applied Research & Agrotechnology, v. 7, n. 2, p. 109–119. 2014.

SUN, Yuming et al. Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int. J. Mol. Sci., v. 21, n. 2, artigo 572, 2020. Disponível em: https://doi.org/10.3390/ijms21020572.

TENG, P. S., & Zeng, L. (2021). Blast Diseases of Rice in the 21st Century: Understanding the Mechanisms and Opportunities for Enhancing Resistance. Phytopathology, 111(6), 1022-1036.

WANG, H. et al. Varietal susceptibility overcomes climate change effects on the future trends of rice blast disease in Northern Italy. Agricultural Systems, v. 193, p. 103223, 1 out. 2021.

WANG, L.; DEN, F.; REN, W. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crops Research, v. 180, p. 54-62, 15 ago. 2015. Disponível: https://doi.org/10.1016/j.fcr.2015.05.010.

WIRASWATI, S. M. et al. Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. Journal of Plant Protection Research; 2019; vol. 59; No 1; 86-94.

WU, C. et al. Effects of Asymmetric Heat on Grain Quality During the Panicle Initiation Stage in Contrasting Rice Genotypes. Journal of Plant Growth Regulation, v. 42, n. 2, p. 630–636, 1 fev. 2023.

WU, J.; SUN, L.Q.; SONG, Y.; BAI, Y.; WAN, G.; WANG, J.; XIA, J.; et al. The OsNLP3/4-OsRFL module regulates nitrogen-promoted panicle architecture in rice. New Phytologist, [s.l.], v. 230, n. 1, p. 56-68, 2023. Disponível: https://doi.org/10.1111/nph.19318.

XIONG, R.; TAN, X.; YANG, T.; WANG, H.; et al. Starch multiscale structure and physicochemical property alterations in high-quality indica rice quality and cooked rice texture under different nitrogen panicle fertilizer applications. International Journal of Biological Macromolecules, [s.l.], v. 252, p. 126455, 1 dez. 2023. Disponível: https://doi.org/10.1016/j.ijbiomac.2023.126455.

YANG, G., Ji, H., Liu, H., Feng, Y., Zhang, Y., Chen, L., & Guo, Z. (2021). Nitrogen fertilizer reduction in combination with Azolla cover for reducing ammonia volatilization and improving nitrogen use efficiency of rice. PeerJ, 9, e11077. Disponível: https://peerj.com/articles/11077.

YANG, J. et al. Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System. Agronomy, v. 12, n. 11, p. 2838, nov. 2022.

YOU, A.; CAO, K.; YU, L.; WANG, Q.; JIA, D.; GAO, C. Effects of heat stress on the conversion of sucrose to starch in rice (Oryza sativa L.) grains during the grain-filling period. Crop Science, v. 57, n. 2, p. 907-914, 2017. Disponível em: https://academic.oup.com/plphys/article/188/1/285/6395367.

YONEYAMA, T. et al. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis. Frontiers in Plant Science, v. 7, 3 ago. 2016.

YOSHIDA, S. Fundamentals of Rice Crop Science. Los Baños: International Rice Research Institute, 1981. Disponível: https://www.worldcat.org/title/fundamentals-of-rice-crop-science/oclc/7577917.

ZHOU, Q., Guo, W., Chen, N., Wang, Z., Li, G., Ding, Y., Ninomiya, S., & Mu, Y. (2023). Analyzing Nitrogen Effects on Rice Panicle Development by Panicle Detection and Time-Series Tracking. Plant Phenomics, 5, Article ID 0048. DOI: 10.34133/plantphenomics.0048.

Downloads

Publicado

2024-08-18

Edição

Seção

Articles