Graphene synthesis and its implications on electrical properties: a comparative study

Síntese de grafeno e suas implicações nas propriedades elétricas: um estudo comparativo

Autores

Resumo

This study investigates the impact of graphene synthesis techniques, such as chemical exfoliation, Chemical Vapor Deposition (CVD) and Liquid Phase Exfoliation (LPE) on electrical conductivity. The objective is to understand how variations in synthesis methods influence the morphology of graphene and, consequently, its electrical characteristics. Description techniques are explored in detail to identify how each process affects the structure and electrical performance of graphene. The results indicate that chemical exfoliation introduces more damage to the graphene structure, generally its electrical conductivity, while the CVD method tends to produce graphene with greater uniformity and superior conductivity. LPE, on the other hand, offers a balance between quality and production efficiency, making it particularly promising for large-scale applications. The study provides valuable information for the selection of description methods based on specific graphene application requirements. The discoveries could facilitate the development of more efficient materials for advanced electronics, contributing to the optimization of industrial graphene production processes and promoting advanced advances in materials technology.

Downloads

Não há dados estatísticos.

Referências

ACIK, Muge; CHABAL, Yves. A review on thermal exfoliation of graphene oxide. J Mater Sci Res, v. 2, p. 101-112, jan. 2013.

ADETAYO, Adeniji; RUNSEWE, Damilola et al. Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, v. 9, n. 02, p. 207, 2019.

ALAFERDOV, A. V. et al. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon, v. 69, p. 525-535, 2014. DOI: https://doi.org/10.1016/j.carbon.2013.12.062.

ALEMOUR, Belal; YAACOB, M. H.; LIM, H. N.; HASSAN, Mohd Roshdi. Review of electrical properties of graphene conductive composites. International Journal of Nanoelectronics and Materials, v. 11, n. 4, p. 371-398, 2018.

ALSHAMKHANI, Maher T.; LEE, Keat Teong; PUTRI, Lutfi Kurnianditia; MOHAMED, Abdul Rahman; LAHIJANI, Pooya; MOHAMMADI, Maedeh. Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, v. 9, n. 6, p. 106506, 2021. DOI: 10.1016/j.jece.2021.106506.

ANDREI, Eva Y; LI, Guohong; DU, Xu. Propriedades eletrônicas do grafeno: uma perspectiva da microscopia de tunelamento de varredura e magnetotransporte. Relatórios sobre o progresso da física, v. 75, n. 5, p. 056501, 2012. IOP Publishing.

BACHMATIUK, Alicja; ZHAO, Jiong; GORANTLA, Sandeep Madhukar; MARTINEZ, Ignacio Guillermo Gonzalez; WIEDERMANN, Jerzy; LEE, Changgu; ECKERT, Juergen; RUMMELI, Mark Hermann. Low voltage transmission electron microscopy of graphene. Small, v. 11, n. 5, p. 515-542, 2015. DOI: 10.1002/smll.201401804.

BHATT, Mahesh Datt; KIM, Heeju; KIM, Gunn. Various defects in graphene: a review. RSC Advances, v. 12, n. 33, p. 21520-21547, 2022.

BIRÓ, László P.; LAMBIN, Philippe. Grain boundaries in graphene grown by chemical vapor deposition. New Journal of Physics, v. 15, n. 3, p. 035024, 2013.

BOYCHUK, V. M.; KOTSYUBYNSKY, V. O.; BANDURA, Kh. V.; YAREMIY, I. P.; FEDORCHENKO, S. V. Reduced graphene oxide obtained by Hummers and Marcano-Tour methods: comparison of electrical properties. Journal of Nanoscience and Nanotechnology, v. 19, n. 11, p. 7320-7329, 2019. DOI: 10.1166/jnn.2019.16712.

CAMARGOS, Juliana Sofia Fonseca; DE OLIVEIRA SEMMER, Adriana; DA SILVA, Sidney Nicodemos. Characteristics and applications of graphene and graphene oxide and the main routes for synthesis. The Journal of Engineering and Exact Sciences , v. 3, no. 8, p. 1118-1130, 2017. DOI: https://doi.org/10.18540/jcecvl3iss8pp1118-1130.

CAO, Mu; XIONG, Ding-Bang; YANG, Li; LI, Shuaishuai; XIE, Yiqun; GUO, Qiang; LI, Zhiqiang; ADAMS, Horst; GU, Jiajun; FAN, Tongxiang. Ultrahigh electrical conductivity of graphene embedded in metals. Advanced Functional Materials, v. 29, n. 17, p. 1806792, 2019. Wiley Online Library.

CASALLAS-CAICEDO, Francy; VERA, Enrique; AGARWAL, Arvind; DROZD, Vadym; DURYGIN, Andriy; WANG, C. Effect of exfoliation method on graphite oxide: a comparison between exfoliation by ball milling and sonication in different media. Journal of Physics: Conference Series, v. 1386, p. 012016, nov. 2019. DOI: 10.1088/1742-6596/1386/1/012016.

CASTRO NETO, A. H.; GUINEA, F.; PERES, N. M. R.; NOVOSELOV, K. S.; GEIM, A. K. The electronic properties of graphene. Rev. Mod. Phys., v. 81, n. 1, p. 109-162, jan. 2009. DOI: 10.1103/RevModPhys.81.109.

CHERNOVA, Ekaterina A.; GURIANOV, Konstantin E.; BROTSMAN, Victor A.; VALEEV, Rishat G.; KAPITANOVA, Olesya O.; BEREKCHIIN, Mikhail V.;

CHO, Joon Hyong et al. Controlling the number of layers in graphene using the growth pressure. Nanotechnology, v. 30, n. 23, p. 235602, 2019.

CLIFFORD, Keiran; OGILVIE, Sean P.; GRAF, Aline Amorim; WOOD, Hannah J.; SEHNAL, Anne C.; SALVAGE, Jonathan P.; LYNCH, Peter J.; LARGE, Matthew J.; DALTON, Alan B. Emergent high conductivity in size-selected graphene networks. Carbon, v. 218, p. 118642, 2024. DOI: 10.1016/j.carbon.2023.118642.

DEEMER, Eva M.; PAUL, Pabitra Kumar; MANCIU, Felicia S.; BOTEZ, Cristian E.; HODGES, Deidra R.; LANDIS, Zachary; AKTER, Tahmina; CASTRO, Edison; CHIANELLI, Russell R. Consequence of oxidation method on graphene oxide produced with different size graphite precursors. Materials Science and Engineering: B, v. 224, p. 150-157, May 2017. DOI: 10.1016/j.mseb.2017.07.018.

GEIM, Andre K.; NOVOSELOV, Konstantin S. The rise of graphene. Nature Materials, v. 6, n. 3, p. 183-191, mar. 2007. DOI: 10.1038/nmat1849.

GUAN, Yifei; DUTREIX, Clement; GONZÁLEZ-HERRERO, Héctor; UGEDA, Miguel M.; BRIHUEGA, Ivan; KATSNELSON, Mikhail I.; YAZYEV, Oleg V.; RENARD, Vincent T. Observation of Kekulé vortices around hydrogen adatoms in graphene. Nature Communications, v. 15, p. 1-6, 2024. DOI: 10.1038/s41467-024-47267-8.

HACK, Renata; HACK GUMZ CORREIA, Cláudia; DE SIMONE ZANON, Ricardo Antônio; PEZZIN, Sérgio Henrique. Characterization of graphene nanosheets obtained by a modified Hummer’s method. Revista Materia, v. 23, n. 1, 2018. DOI: 10.1590/s1517-707620170001.0324.

HAN, Tae-Hee; KIM, Hobeom; KWON, Sung-Joo; LEE, Tae-Woo. Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports, v. 118, p. 1-43, 2017. Elsevier

HASHIMOTO, Ayako; SUENAGA, Kazu; GLOTER, Alexandre; URITA, Koki; IIJIMA, Sumio. Direct evidence for atomic defects in graphene layers. Nature, v. 430, n. 7002, p. 870-873, 2004. DOI: 10.1038/nature02817.

HERNANDEZ, Yenny et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, v. 3, n. 9, p. 563-568, 2008. DOI: https://doi.org/10.1038/nnano.2008.215

IKRAM, Rabia; JAN, Badrul Mohamed; AHMAD, Waqas. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, v. 9, n. 5, p. 11587-11610, 2020.

INKSON, B. J. 2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: HÜBSCHEN, Gerhard; ALTPETER, Iris; TSCHUNCKY, Ralf; HERRMANN, Hans-Georg (Eds.). Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Woodhead Publishing, 2016. p. 17-43. DOI: 10.1016/B978-0-08-100040-3.00002-X.

JIANG, Tao; LIU, Hengrui; HUANG, Di; ZHANG, Shuai; LI, Yingguo; GONG, Xingao; SHEN, Yuen Ron; LIU, Wei Tao; WU, Shiwei. Valley and band structure engineering of folded MoS₂ bilayers. Nature Nanotechnology, v. 9, n. 10, p. 825-829, 2014. DOI: 10.1038/nnano.2014.176. ISSN: 1748-3395.

JOHRA, Fatima Tuz; LEE, Jee-Wook; JUNG, Woo-Gwang. Facile and safe graphene preparation on solution-based platform. Journal of Industrial and Engineering Chemistry, v. 20, n. 5, p. 2883-2887, 2014. DOI: 10.1016/j.jiec.2013.11.022. ISSN: 1226-086X.

KAVYASHREE, K.; MADHURI, D. R.; LAMANI, Ashok R.; JAYANNA, H. S.; HEMANTHA, M. Effect of graphite particle size on oxidation of graphene oxide prepared by modified Hummer's method. AIP Conference Proceedings, v. 2265, 2020. DOI: 10.1063/5.0017325. ISSN: 1551-7616.

LALIRE, Thibaut; LONGUET, Claire; TAGUET, Aurélie. Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon, v. 225, p. 119055, 2024. DOI: 10.1016/j.carbon.2024.119055.

LI, Xuesong et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, v. 9, n. 12, p. 4359-4363, 2009. DOI: 10.1021/nl902623y.

LI, Zheling et al. Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano, v. 14, n. 9, p. 10976-10985, 2020. DOI: https://pubs.acs.org/doi/10.1021/acsnano.0c03916.

LIM, Soomook; PARK, Hyunsoo; YAMAMOTO, Go; LEE, Changgu; SUK, Ji. Measurements of the electrical conductivity of monolayer graphene flakes using conductive atomic force microscopy. Nanomaterials, v. 11, p. 2575, 2021. DOI: 10.3390/nano11102575.

LIU, Liting; LIU, Yuan; DUAN, Xiangfeng. Graphene-based vertical thin film transistors. Science China Information Sciences, v. 63, p. 1–12, 2020. DOI: https://doi.org/10.1007/s11432-020-2806-8.

LIU, Naixu; TANG, Qingguo; HUANG, Bin; WANG, Yaping. Large-Scale Production. [Journal Name], 2022, p. 1-11.

LIU, Wei et al. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, v. 49, n. 13, p. 4122-4130, 2011.

LIU, Xuefeng; BIE, Zhiwu; WANG, Jinbao; SUN, Ligang; TIAN, Meiling; OTERKUS, Erkan; HE, Xiaoqiao. Investigation on fracture of pre-cracked single-layer graphene sheets. Computational Materials Science, v. 159, p. 365-375, 2019. DOI: 10.1016/j.commatsci.2018.12.014.

LOBO, A.; MARTIN, Airton; ANTUNES, Erica; TRAVA-AIROLDI, Vladimir; CORAT, Evaldo. Caracterização de materiais carbonosos por espectroscopia Raman. Revista Brasileira de Aplicações de Vácuo, v. 24, 2005.

MA, Xiaoguang; WANG, Yimeng; HAO, Xiaojian; GU, Min; ZHANG, Qiming. Giant nonlinear optical response of graphene oxide thin films under the photochemical and photothermal reduction. Advanced Materials Interfaces, v. 9, n. 21, p. 2200890, 2022. DOI: 10.1002/admi.202200890.

MARASCHIN, Thuany Garcia; CORREA, Roberto da Silva; RODRIGUES, Luiz Frederico; BALZARETTI, Naira Maria; GALLAND, Griselda Barrera; REGINA, Nara; BASSO, De Souza. Chitosan nanocomposites with graphene-based filler: experimental section. Revista de Engenharia e Pesquisa Aplicada, v. 22, p. 1-10, 2018.

MBAYACHI, Vestince B.; NDAYIRAGIJE, Euphrem; SAMMANI, Thirasara; TAJ, Sunaina; MBUTA, Elice R.; KHAN, Atta Ullah. Graphene synthesis, characterization and its applications: A review. Results in Chemistry, v. 3, p. 100163, 2021. DOI: 10.1016/j.rechem.2021.100163.

NANDA, Sitansu Sekhar; KIM, Min Jik; YEOM, Kwi Seok; AN, Seong Soo A.; JU, Heongkyu; YI, Dong Kee. Raman spectrum of graphene with its versatile future perspectives. TrAC Trends in Analytical Chemistry, v. 80, p. 125-131, 2016. DOI: 10.1016/j.trac.2016.02.024. ISSN: 0165-9936.

NOVOSELOV, K. S.; GEIM, A. K.; MOROZOV, S. V.; JIANG, D.; ZHANG, Y.; DUBONOS, S. V.; GRIGORIEVA, I. V.; FIRSOF, A. A. Electric field effect in atomically thin carbon films. Science, v. 306, n. 5696, p. 666-669, 2004. DOI: 10.1126/science.1102896.

PARK, Won-Hwa; JO, Insu; HONG, Byung Hee; CHEONG, Hyeonsik. Controlling the ripple density and heights: a new way to improve the electrical performance of CVD-grown graphene. Nanoscale, v. 8, n. 18, p. 9822-9827, 2016.

PEDRAZZETTI, Lorenzo et al. Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni. Surface and interface Analysis, v. 49, n. 11, p. 1088-1094, 2017. DOI: https://doi.org/10.1002/sia.6281.

QI, Zenan; CAO, Penghui; PARK, Harold. Density functional theory calculation of edge stresses in monolayer MoS2. Journal of Applied Physics, v. 114, p. 163508, out. 2013. DOI: 10.1063/1.4826905.

RAMÍREZ, Cristina; SAFFAR SHAMSHIRGAR, Ali; PÉREZ-COLL, Domingo; OSENDI, María Isabel; MIRANZO, Pilar; TEWARI, Girish C.; KARPPINEN, Maarit; HUSSAINOVA, Irina; BELMONTE, Manuel. CVD nanocrystalline multilayer graphene coated 3D-printed alumina lattices. Carbon, v. 202, p. 36-46, 2023. DOI: 10.1016/j.carbon.2022.10.085.

REZAEI, Asma; KAMALI, Bita; KAMALI, Ali Reza. Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Measurement, v. 150, p. 107087, 2020. DOI: 10.1016/j.measurement.2019.107087.

REZENDE, Sergio M. Materiais e dispositivos eletrônicos. 4. ed. São Paulo: Editora Livraria da Física, 2014.

RIDZUAN, Auni Rauhah; IBRAHIM, Suriani; KARMAN, Salmah; AB KARIM, Mohd Sayuti; WAN KAMARUL ZAMAN, Wan Safwani Wan; CHAN, Chow Khuen. Study on electrical conductivity of graphene oxide decorated with silver nanoparticle for electrochemical sensor development. International Journal of Electrochemical Science, v. 16, n. 5, p. 1-11, 2021. DOI: 10.20964/2021.05.03. Disponível em: 10.20964/2021.05.03.

SHEN, C.; OYADIJI, S. Olutunde. The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: A review. Materials Today Physics, v. 15, p. 100257, 2020. DOI: 10.1016/j.mtphys.2020.100257.

SHESHMANI, Shabnam; ARAB FASHAPOYEH, Marzieh. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chimica Slovenica, v. 60, n. 4, p. 813-825, 2013. DOI: 10.17344/acsi.2013.991.

SILVA, Renato. A Difração de Raios X: uma técnica de investigação da estrutura cristalina de materiais. Revista Processos Químicos, v. 14, p. 73-82, set. 2020. DOI: 10.19142/rpq.v14i27.577.

SIMÃO, D.; NEVES, A. Laboratórios Abertos 2018. [S.l.]: Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 2018.

SIRAT, Mohamad Shukri et al. Growth conditions of graphene grown in chemical vapour deposition (CVD). Sains Malays., v. 46, n. 7, p. 1033-1038, 2017.

STANKOVICH, Sasha; PINER, Richard D.; NGUYEN, SonBinh T.; RUOFF, Rodney S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, v. 44, n. 15, p. 3342-3347, 2006. DOI: 10.1016/j.carbon.2006.06.004.

TIWARI, Santosh K.; SAHOO, Sumanta; WANG, Nannan; HUCZKO, Andrzej. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, v. 5, n. 1, p. 10-29, 2020. DOI: 10.1016/j.jsamd.2020.01.006.

VIANELLI, A.; CANDINI, A.; TREOSSI, E.; PALERMO, V.; AFFRONTE, M. Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon, v. 89, p. 188-196, 2015. DOI: 10.1016/j.carbon.2015.03.019.

VLASSIOUK, Ivan; SMIRNOV, Sergei; IVANOV, Ilia; FULVIO, Pasquale; DAI, Sheng; MEYER III, Harry; CHI, Miaofang; HENSLEY, Dale; DATSKOS, Panos; LAVRIK, Nickolay. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology, v. 22, p. 275716, mai. 2011. DOI: 10.1088/0957-4484/22/27/275716.

XIONG, Xiaotong; HUANG, Beiqing; WEI, Xianfu. Discussing the preparation conditions of graphene. Lecture Notes in Electrical Engineering, v. 417, p. 1155-1161, 2017. DOI: 10.1007/978-981-10-3530-2_141.

XU, Ke; CAO, Peigen; HEATH, James R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Letters, v. 9, n. 12, p. 4446-4451, 2009.

XU, Yanyan; CAO, Huizhe; XUE, Yanqin; LI, Biao; CAI, Weihua. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials, v. 8, n. 11, p. 942, 2018. DOI: https://doi.org/10.3390/nano8110942.

YANG, Gao and Li, Lihua and Lee, Wing Bun and Ng, Man Cheung. Structure of graphene and its disorders: a review. Science and technology of advanced materials, v. 19, n. 1, p. 613-648, 2018.

YAO, Wenqian; LIU, Hongtao; SUN, Jianzhe; WU, Bin; LIU, Yunqi. Engineering of Chemical Vapor Deposition Graphene Layers: growth, characterization, and properties. Advanced Functional Materials, v. 32, n. 42, p. 2202584, 2022. DOI: 10.1002/adfm.202202584.

YASIN, Ghulam; ARIF, Muhammad; SHAKEEL, Muhammad; DUN, Yuchao; ZUO, Yu; KHAN, Waheed Qamar; TANG, Yuming; KHAN, Ajmal; NADEEM, Muhammad. Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: manipulando o efeito da densidade de corrente de deposição em sua morfologia, propriedades mecânicas e desempenho de erosão-corrosão. Advanced Engineering Materials, v. 20, n. 7, p. 1701166, 2018. DOI: 10.1002/adem.201701166.

YONG-ZHEN, Wang et al. The effect of heat treatment on the electrical conductivity of highly conducting graphene films. 新型炭材料, v. 27, n. 04, p. 266-270, 2012.

ZAFAR, Zainab; NI, Zhen Hua; WU, Xing; SHI, Zhi Xiang; NAN, Hai Yan; BAI, Jing; SUN, Li Tao. Evolution of Raman spectra in nitrogen doped graphene. Carbon, v. 61, p. 57-62, 2013. DOI: 10.1016/j.carbon.2013.04.065.

ZAPATA-HERNANDEZ, Camilo; DURANGO-GIRALDO, Geraldine; CACUA, Karen; BUITRAGO-SIERRA, Robison. Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, v. 113, n. 1, p. 131-140, 2022. DOI: 10.1080/00405000.2020.1865507.

ZHANG, Long; LI, Xuan; HUANG, Yi; MA, Yanfeng; WAN, Xiangjian; CHEN, Yongsheng. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, v. 48, n. 8, p. 2367-2371, 2010.

ZHANG, Xiuyun; XIN, John; DING, Feng. The edges of graphene. Nanoscale, v. 5, p. 1-. fev. 2013. DOI: 10.1039/c3nr34009k.

ZHU, Yanwu; MURALI, Shanthi; CAI, Weiwei; LI, Xuesong; SUK, Ji Won; POTTS, Jeffrey R.; RUOFF, Rodney S. Graphene and graphene oxide: síntese, propriedades e aplicações. Advanced Materials, v. 22, n. 35, p. 3906-3924, 2010. DOI: 10.1002/adma.201001068.

Downloads

Publicado

2024-08-18

Edição

Seção

Articles