Use of the fuzzy algorithm in samples with imprecise descriptions to define typological domains.
Uso do algoritmo fuzzy em amostras com descrições imprecisas para definição de domínios tipológicos.
Resumo
The identification of homogeneous spatial domains is an important step in mineral resource modeling. Inspired by the growing integration of machine learning into geostatistical modeling, this study addresses the fuzzy algorithm for automated definition of typological classes, thus improving the reliability of information. The biggest challenge in building the 3D model is optimizing the time spent grouping the domains since 53% of the samples in the database have inaccurate lithological descriptions. A combination of statistical analyzes of grades and geological characteristics was carried out to set up the fuzzy inference system based on expert knowledge. The results were verified by comparing the clustering obtained with other machine learning techniques. The algorithm proved to be effective in maintaining a better separation of typologies. Other benefits achieved using computational intelligence were the quantification of uncertainty in lithological descriptions; replicability and standardization of concepts for defining groups and automation of steps, allowing agile updating of the model when new data is inserted
Downloads
Referências
ABILDIN, Y., XU, C., DOWD, P., ADELI, A., 2023. Geometallurgical Responses on Lithological Domains Modelled by a Hybrid Domaining Framework. Minerals, 13, 918. https://doi.org/10.3390/min13070918.
ALMEIDA, P.E.M., EVSUKOFF, A.G.,2003. Sistemas Fuzzy. In: REZENDE, S.O. (coord.). Sistemas inteligentes: Fundamentos e Aplicações, Cap. 7, Manole, p. 169-202.
BRAGA, S. A., COSTA, J. F. C. L. 2016. Krigagem dos indicadores aplicada a modelagem das tipologias de minério fosfatados da mina F4. HOLOS, 1, 394–403. https://doi.org/10.15628/holos.2016.3870.
BROD, J.A., RIBEIRO, C.C., GASPAR, J.C., BROD, T.C., BARBOSA, E.S.R., RIFFEL, B.F., SILVA, J.F., CHABAN, N., FERRARI, A. J. D., 2004. Excursão 1. Geologia e mineralizações dos complexos alcalino-carbonatíticos da Província Ígnea do Alto Paranaíba, Congresso Brasileiro de Geologia, XLII, Araxá, MG, pp. 1 29.
CORDEIRO, P.F.O., BROD, J.A., PALMIERI, M., OLIVEIRA, C.G., BARBOSA, E.S.R., SANTOS, R.V., GASPAR, J.C., ASSIS, L.C., 2011a. The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geology Reviews. https://doi.org:10.1016/j.oregeorev.2011.06.013.
DEMICCO, R. V, KLIR, G. J., 2004. Fuzzy Logic in Geology. Academic Press. An imprint of Elsevier Science. 352P.
DUNHAM, S. AND VANN, J., 2007. Geometallurgy, geostatistics and project value - does your block model tell you what you need to know? in ‘Project evaluation conference, Melbourne, Victoria’, pp. 19–20.
FRIMMEL, H. E., & NWAILA, G. T., 2020. Geologic evidence of syngenetic gold in the Witwatersrand Goldfields, South Africa. In T. Sillitoe, R. Goldfarb, F. Robert, & S. Simmons (Eds.), Geology of the major gold deposits and provinces of the world, (Special Publication 23, pp. 645–668). Society of Economic Geologists. https://doi.org/10.5382/SP.23.31
GIBSON, S.A., THOMPSON R.N., DICKIN A.P., LEONARDOS O.H., 1995a. High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis. Earth Planet Sci. Lett. 136: 149-165.
IZBICKI, R., SANTOS, T. M., 2020. Aprendizado de máquina: uma abordagem estatística. [livro eletrônico], Carlos, SP. 272p.
KNIGHT, R., OLSON HOAL, K., & ABRAHAM, A. P. G., 2011. Threedimensional geometallurgical data integration for predicting concentrate quality and tailings composition in a massive sulfide deposit. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 227–232).
KOVACIC, Z.; BOGDAN, S., 2006. Fuzzy Controller Design Theory and Application. Press is an imprint of Taylor & Francis Group, 416p.
LARRONDO, P.F.; DEUTSCH, C.V, 2004. Methodology for Geostatistical Model of Gradational Geological Boundaries: Local Non-stationary LMC. Cent. Comput. Geostat.
LOZANO, C.; BENNET, C., 2003. Geometallurgical modeling applied to production forecasting, plant design and optimisation. Universidad de Chile – Departamento Ingeniería de Minas Taller PROCEMIN, 11p.
MOREIRA, G. C., 2020. Análise de agrupamento aplicada à definição de domínios de estimativa para a modelagem de recursos minerais. Dissertação (Mestre em Engenharia de Minas, Metalurgia e de Materiais), Universidade Federal do Rio Grande do Sul, Porto Alegre, 102p.
NETO, J. M. M.; MOITA, G. C., 1998. Uma introdução à análise exploratória de dados multivariados. Química Nova, 21(4) p.
NEWTON, M. & GRAHAM, J., 2011. Spatial modelling and optimisation of ge ometallurgical indices, in ‘The First AusIMM International Geometallurgy Conference’, Brisbane, pp. 247–261.
RAJABINASAB, B.; ASGHARI, O., 2018. Geometallurgical domaining by cluster analysis: Iron ore deposit case study. Natural Resources Research 28. 665-684. https://doi.org/10.1007/s11053-018-9411-6.
RIBEIRO, C. C, 2008. Geologia, geometalurgia, controles e gênese dos depósitos de fósforo, terras raras e titânio do complexo carbonatítico Catalão I, GO. 508 f. Tese de doutorado em Geologia-Universidade de Brasília, Brasília.
ROMARY, T., RIVOIRARD, J., DERAISME, J., QUINONES, C., FREULON, X., 2012. Domaining by clustering multivariate geostatistical data. In: Geostatistics Oslo, pp. 455–466. https://doi.org/10. 1007/978-94-007-4153-9_37
ROSSI, M. E.; DEUTSCH, C. V., 2014. Mineral resource estimation. [S.l.]: Springer Science & Business Media.
SANCHES. M. K., 2003. Aprendizado de máquina semi-supervisionado: proposta de um algoritmo para rotular exemplos a partir de poucos exemplos rotulados. Dissertação (Mestre em Ciencias da computação. Universidade de São Paulo, 142p.
VANN, J., JACKSON, J., COWARD, S., & DUNHAM, S. 2011. The Geomet curve—A model for implementation of geometallurgy. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 35–43).
WILLIAMS, S. R. E RICHARDSON, J. M., 2004. Geometallurgical Mapping: A New Approach That Reduces Technical Risk. Proceedings 36th Annual Meeting of the Canadian Mineral Processors, Paper 16, 28p.
YASOJIMA, C. T. K., 2020. Modelo de Krigagem Automática Baseada em Agrupamento. Tese (Doutor em Ciências da Computação. Universidade Federal do Pará, 86p.