Wheat seed quality assessment after thiamethoxam treatment: integrating optical techniques with standard methods

Avaliação da qualidade de sementes de trigo após tratamento com tiametoxam: integração de técnicas ópticas com métodos padrão

Autores

  • Ana Carla Cordeiro
  • Fernando Augusto Henning
  • Gustavo Henrique Couto
  • Eduardo Bertogna UTFPR
  • Ricardo Kamikawachi

Palavras-chave:

Insecticide Treatment, Physiological Responses;, Thiamethoxam, Ultra-weak photon emissions, Fourier transform infrared spectroscopy

Resumo

Insecticide treatment of seeds protects against early field pests. Therefore, studies on the physiological and biochemical responses of crops exposed to insecticides are required. Standard (non-optical) tests are used to evaluate the physiological quality of seeds. However, some tests may need to be more sensitive to observe possible differences between the control group and the groups of interest. Optical techniques such as ultra- weak photon emission and Fourier transform infrared spectroscopy have been discovered to aid standard tests. The effects of different doses of Thiamethoxam were evaluated on wheat seeds from the cultivar FPS Certero. Samples were divided into five groups: control and treated with 75, 150, 225, and 300 mL of Thiamethoxam for each 100 kg of seeds. The ultra-weak photon emission results showed that it was possible to classify the treatment doses through the intensity of photon emissions. The Fourier transform infrared spectroscopy analyses can be used for biological analysis but are unrelated to Thiamethoxam seed treatment. Considering the findings, optical techniques can be used as an additional tool for assessing the physiological quality of seeds.

Downloads

Não há dados estatísticos.

Referências

ALAWAN, K. Application of Proteomics in Diagnosis of ADHD, Schizophrenia, Major

Depression, and Suicidal Behavior. Donev, R. Advances in Protein Chemistry and

Structural Biology, USA, Elsevier Inc., v.15, 2014, p. 283 - 315. DOI:

http://dx.doi.org/10.1016/B978-0-12-800453-1.00009-9.

ALMEIDA, A. S.; et al. Desempenho fisiológico de sementes de aveia-preta tratadas com

Tiametoxam. Ciências Agrárias, v. 33, n. 5, p. 1619 - 1628, 2012. DOI:

http://dx.doi.org/10.5433/1679-0359.2012v33n5p1619.

AMIR, R. M.; et al. Application of Fourier transform infrared (FTIR) spectroscopy for

identifying wheat varieties. J. Food Sci. Technol., v.50, p. 1018 - 1023, 2011. DOI:

http://dx.doi.org /10.1007/s13197-011-0424-y.

BERTOGNA, E. G.; et al. Acute stress in seedlings detected by Ultra-Weak photon

emission. Journal of Photochem. And Photobiol. B: Biol., Elsevier, v. 118, p. 74 - 76,

DOI: http://dx.doi.org/10.1016/j.jphoto biol.2012.11.005.

BERTOGNA, E.; CORDEIRO, A. C.; MARCHI, F.; FABRIS, J. L.; COUTO, G. H.;

KALINOWSKI, H. J.; GAMBA, H. Design and Implementation of a Measurement

System for Ultra-Weak Bioluminescence Detection from E. coli Cultures Applied to

Sanitary Control. In: 12th IEEE/IAS International Conference on Industry

Applications, 2016, Curitiba, PR. Anais... Curitiba, PR: INDUSCON, 2016. DOI:

http://dx.doi.org/10.1109 / INDUSCON.2016.7874576.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de

Sementes (RAS). Brasília - DF, p. 399, 2009.

CALABRÒ, E.; MAGAZÙ, S. A review of advances in the analysis of biological systems

by means of Fourier Transform Infrared (FTIR) Spectroscopy. MOORE, E. (ed.).

Fourier Transform Infrared Spectroscopy (FTIR): methods, analysis, and research

insights. Hauppauge, New York: Nova Science Publishers, Inc., cap. 1, p. 1- 9. ISBN

, 2016.

CASTRO, G. S. A.; et al. Tratamento de sementes de soja com inseticidas e um

bioestimulante. In: Pesq. agropec. bras., Brasília, v.43, n.10, p.1311-1318, 2008. DOI:

https://doi.org/10.1590/S0100-204X2008001000008.

CASTRO, P. R. C. Agroquímicos de controle hormonal na agricultura tropical. Piracicaba

- SP: Série Produtor Rural, ELSALQ - DIBD, n. 32, p. 46, 2006.

CARVALHO, N. M.; NAKAGAWA, J. Sementes: ciência, tecnologia e produção. 4

ed. Jaboticabal - SP: FUNEP, cap. 5, cap. 7, cap. 9, p. 66 - 92; 132 - 137; 227 - 238, 2000.

CIFRA, M.; POSPÍŠIL, P. Ultra-weak photon emission from biological samples:

Definition, mechanisms, properties, detection, and applications. Journal of

Photochemistry and Photobiology B: Biology, v. 139, n. 2–10, 2014. DOI:

https://doi.org/10.1016/j.jphotobiol.2014.02.009

CONAB - Companhia Nacional de Abastecimento. A Cultura do Trigo. p. 218, 2017.

COSTA, M. G.; SOUZA, E. L.; STAMFORD, T.L.M. Qualidade tecnológica de grãos e

farinhas de trigo nacionais e importados. Ciênc. Tecnol. Aliment., v. 28, n. 1, p. 220 -

, 2008. DOI: http://dx.doi.org/10.1590/S0101-20612008000100031.

DEMIR, P.; ONDE, S.; SEVERCAN, F. Phylogeny of cultivated and wild wheat species

using ATR - FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and

Biomolecular Spectroscopy, v. 135, p. 757 - 763, 2015. DOI:

http://dx.doi.org/10.1016/j.saa.2014.07.025.

FAN, Y.; MA, S.; WU, T. Individual wheat kernels vigor assessment based on NIR

spectroscopy coupled with machine learning methodologies. Infrared Physics &

Technology., v.105, p. 1 - 7, 2020. DOI: https://doi.org/10.1016/j.infrared.2020.103213.

GALLEP, C. M.; SANTOS, S.R. Photon-counts during germination of wheat (Triticum

aestivum) in wastewater sediment solutions correlated with seedling growth. Seed Sci. &

Technol., v. 35, p. 607 - 614, 2007. DOI: http://dx.doi.org/10.15258/sst.2007.35.3.08.

KATO, K. et al. Application of Ultra-Weak photon emission measurements in

agriculture. Journal of Photochemistry and Photobiology. B: Biology., Elsevier, v.

, p. 54 - 62, 2014. DOI: http://dx.doi.org/10.1016/j.jphotobiol.2014.06.010.

LARIOS, G. S.; et al. Soybean seed vigor discrimination by infrared spectroscopy and

machine learning algorithms. Analytical Methods, n.35, v.12, p. 4303 - 4309, 2020.

DOI: http://dx.doi.org/10.1039/d0ay01238f.

NAKAGAWA, J. Teste de vigor baseados na avaliação de plântulas. In: VIEIRA, R.D.;

CARVALHO, N.M. Testes de vigor em sementes. Jaboticabal: FUNEP, p.49 - 86, 1994.

NAKAGAWA, J. Testes de vigor baseados no desempenho de plântulas.

KRZYZANOWSKI, F. C.; VIEIRA, R. D.; FRANÇA NETO, J. B. Vigor de

sementes: conceitos e testes. Londrina: ABRATES, p. 1 - 24, 1999.

NEMATOLLAHI, M. A.; et al. Ultra-weak photon emission: a nondestructive detection

tool for food quality and safety assessment. Quality Assurance and Safety of Crops &

Foods, v.12, p. 18 - 31, 2020. DOI: http://dx.doi.org/10.15586/qas.v12iSP1.766.

MACEDO, W. R; CASTRO, P. R. C. Thiamethoxam: Molecule moderator of growth,

metabolism and production of spring wheat. Pesticide Biochemistry and Physiology,

Elsevier, v.100, p. 299 - 304, 2011. DOI: http://dx.doi.org/10.1016/j.pestbp.2011.05.003.

MACEDO, W. R. Bioativador em culturas monocotiledôneas: avaliações bioquímica,

fisiológicas e da produção. 80 f. Tese (Doutorado em Ciências) - Universidade de São

Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba - SP, 2012.

MARCOS FILHO, J. M. Fisiologia de Sementes de plantas cultivadas. Piracicaba:

FEALQ, p. 495, v. 12, 2005, ISBN 85-7133-038-7.

MARCOS FILHO, J. Conceituação do vigor der sementes em seus múltiplos aspectos.

Informativo Abrates, v.27, n.3, p.28, 2017.

MARCOS FILHO, J. Importância do potencial fisiológico da semente de soja.

Informativo Abrates, v. 23, n. 1, p. 21-24, 2013.

MAGUIRE, J. D. Speed of germination-aid in selection and evaluation for seedling

emergence and vigor. Crop Science, Madison, v. 2, n. 2, p. 176 - 177, 1962. DOI: https://

doi.org/10.2135/cropsci1962.0011183X000200020033x.

MOULD, R. R., MACKENZIE, A. M., KALAMPOUKA, I., NUNN, A. V. W.,

THOMAS, E. L., BELL, J. D., & BOTCHWAY, S. W. Ultra weak photon emission—a

brief review. Frontiers in Physiology, v. 15, 2024. DOI:

https://doi.org/10.3389/fphys.2024.1348915

MORAES, T. A.; et al. Spontaneous light Emission of wheat seedlings with K2Cr2O7.

Latin America Optics and Photonics Conference (LAOP), p. 27 - 30, 2010. DOI:

http://dx.doi.org/10.1364/LAOP.2010.MB11.

POSPÍŠIL, P. Ultra-weak photon emission from living systems – from mechanism to

application. Journal of Photochemistry and Photobiology B: Biology, v. 139, p.1,

DOI: http://dx.doi.org/10.1016/j.jphotobiol.2014.06.013.

SYNGENTA. CRUISER® 350 FS – 2021. From: https://www.syngenta.com.br

/sites/g/files/zhg256/f/cruiser_350_fs_2.pdf?token=1562327970.

SUCHOWILSKA, E.; et al. Fourier transform infrared - attenuated total reflection for

wheat grain—International Agrophysics, v. 26, p.207 - 210, 2012. DOI:

http://dx.doi.org/10.2478/v10247-012-0030-x.

WANG, J.; YU, Y. Relationship between Ultra-Weak bioluminescence and vigor or

irradiation dose of irradiated wheat. Luminescence, v. 24, p. 209 - 212, 2009. DOI:

http://dx.doi.org/10.1002/bio.1096.

WIJEWARDANA, C.; REDDY, K.R.; BELLALOU, N. Soybean seed Hindi physiology,

quality, and chemical composition under soil moisture stress. Food Chem., v.278, p. 92

- 100, 2019. DOI: https://doi.org/10.1016/j.foodchem.2018.11.035.

YU, Y.; WANG, J. Ultra-weak bioluminescence, and vigor of irradiated rice. Int J Agric

& Biol Eng., v.3, n.1, p. 85 - 90, 2010. DOI: http://dx.doi.org/10.3965/j.issn.1934-

2010.01.085-090.

Downloads

Publicado

2024-07-09

Edição

Seção

Articles