In vitro and in silico antileishmania activity of voriconazole (Vfend)

Atividade antileishmania in vitro e in silico do voriconazol (Vfend)

Autores

DOI:

https://doi.org/10.53660/CLM-3583-24M20

Palavras-chave:

Leishmania, Molecular modeling, Promastigotes

Resumo

American Cutaneous Leishmaniasis (ACL) is a public health problem in 88 countries. The treatment of ATL is based on pentavalent antimony, which has several adverse effects. And through new alternatives for the treatment of leishmaniasis, the use of off-label medications appears. The objective of this work was to evaluate, through in vitro and in silico tests, the activity of voriconazole in tablet form as off-label against the promastigote forms of Leishmania amazonensis and Leishmania guyanensis. In the bioassay, species of Leishmania (L.) amazonensis and Leishmania (V.) guyanensis were used, cultivated in RPMI medium with 10% SFBi. The 50% inhibitory concentration (IC50) of voriconazole was evaluated by the inhibition of promastigotes exposed to voriconazole at concentrations of 6.25 to 200 µg.mL-1 diluted in culture medium and fluconazole at 25 to 400 µg.mL-1. In the experiment, parasites plus culture medium and pentamidine isethionate at 3 µg.mL-1 were used as controls for 24, 48 and 72 h in triplicate. The concentrations of voriconazole used in the test showed antileishmanial activity against promastigotes of both Leishmania species, with an IC50 of 5.34 µg.mL-1 for L. amazonensis and 5.66 µg.mL-1 for L. guyanensis. Therefore, the study showed that off-label voriconazole presented better results than fluconazole against Leishmania species, in addition to showing better enzymatic coupling of new targets.

Downloads

Não há dados estatísticos.

Referências

BASSELIN, M; BADET-DENISOT, M.A; LAWRENCE, F; ROBERT-GERO, M. Effects of pentamidine on polyamine level and biosynthesis in wild-type pentamidine treated and pentamidine-resistent Leishmania. Exp Parasitol., v. 85, p.274-282, 1997.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Manual de Vigilância da Leishmaniose Tegumentar Americana. Relatório técnico. Brasília. 1ª edição. 2017.

BUCKNER, F.S; WILSON, A.J. Colorimetric Assay For Screening Compounds Against Leishmania Amastigotes Grown In Macrophages Am. J. Trop. Med. Hyg., v. 72, n. 5, p. 600– 605, 2005.

BRUN, R; BUHLER, Y; SANDMEIER, U; KAMINSKI, R; BACHI, C.J; RATTENDI, D; LANE, S; CROFT, S; SNOWDON, D; YARDLEY, V; CARAVATTI, G; FREI, J; STANEK, J; METT, H. In vitro trypanocidal activities of new S-adenosylmetionine decarboxylase inhibitors. Antimicrob. Agents Chemother, v. 40, p.1442- 1447, 1996.

BURLEY, S.K; BHIKADIYA, C; BI, C; BITTRICH, S; CHEN, L; CRICHLOW, G.V; CHRISTIE; C.H; DALENBERG, K; COSTANZO, L.D et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, v. 49(D1):D437–D451, 2021.

CARVALHO, S.H. et al. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Tropical. Medicine and International Health, v. 24, n. 4, p. 380–391, 2019.

COLOTTI, G.; ILARI, A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids, v. 40, n. 2, p. 269-85, 2011.

DONNELLY, J.P; DE PAUW, B.E. Voriconazole – a new therapeutic agent withan extended spectrum of antifungal activity. Clinical Microbiology and Infectious Diseases.v. 10, suppl 1, p. 107-117, 2004.

DNDi. Drugs for Neglected Diseases initiative. InfoLEISH - Boletim informativo da redeLEISH-5rd ed. 2021. (https://dndial.org/wp-content/uploads/2023/10/informativo_infoleish_edicao_5_por_digital.pdf). Accessed on 18 Mai 2024.

EBERHARDT, J; SANTOS-MARTINS, D; TILLACK, A.F; FORLI, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, v. 61(8):3891–3898, 2021.

FYFE, P.K; OZA, S.L; FAIRLAMB, A.H; HUNTER, W.N. Leishmania Trypanothione Synthetase-Amidase Structure Reveals a Basis for Regulation of Conflicting Synthetic and Hydrolytic Activities. Journal of Biological Chemistry, v. 283(25):17672–17680, 2008.

FIGUEIREDO, K.A; FIGUEIREDO, J.F.S; COSTA, R.K.M; ALVES, M.M.M; MAGALHÃES, J.L; CARVALHO, A.L.M; LIMA, F.C.A. Prospecção de Alvos Bioquímicos para Estudo in silico na Quimioterapia Antileishmania, Rev. Virtual Quim., v. 10 n. 5, p. 1485-1501, 2018.

FORLI, S; HUEY, R; PIQUE, M.E; SANNER, M.F; GOODSELL, D.S; OLSON, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols. V. 11(5):905–919, 2016.

FRGIRMENIA, C; LUZI, G; MONACO,M; et al. Use of voriconazole in treatment of Scedosporium apiospermun infection: Case report. J. Clin. Microbiol., v.36, p. 1436-1438, 1998.OMTLING, R.A. Voriconazole. Drugs of the Future, v. 21, n. 3, p. 266-271, 1996.

KULKARNI, M; NIVEDITA REDDY, N; GUDE, T; MCGWIRE, B.S. O voriconazol suprime o crescimento de espécies de Leishmania in vitro. Parasitol Res 112, 2095–2099, 2013.

HUSSAIN, H; AL-HARRASI, A; AL-RAWAHI, A; GREEN, I.R; GIBBONS, S. Chem. Rev., v. 114, p. 10369–10428, 2014.

ILARI, A. et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids, v. 42, n. 2-3, p. 803-11, 2012.

MANTA, B. et al. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta, v. 1830, n. 5, p. 3199-216, 2013

OMS. Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniase, 2017.

OLIVEIRA, L.F.G; GILBERT, B; VILLAS BÔAS, G.K. Oportunidades para inovação no tratamento da leishmaniose usando plantas e produtos naturais. Revista Fitos, Rio de Janeiro, v. 8(1): 1-72, 2012.

OSORIO, N.S; CARVALHO, A; ALMEIDA, A.J; PADILLA-LOPEZ, S; LEAO, C; LARANJINHA, J; LUDOVICO, P; PEARCE, D.A; RODRIGUES, F. Nitric oxide signaling is disrupted in the yeast model for Batten disease. Mol Biol Cell, v. 18, n. 7, p. 2755-2767, 2007.

PÉREZ-VICTORIA, J. Mª; PÉREZ-VICTORIA, F.J; CASTANYS, S; GAMARRO F. Estrategias terapéuticas y bases moleculares de la resistência a fármacos frente a la leishmaniasis. Bio jornal, v. 5, n. 1, p. 18, 2006.

PATTERSON, S; ALPHEY, M.S; JONES, D.C; SHANKS, E.J; STREET, I.P; FREARSON, J.A; WYATT, P.G; GILBERT, I.H; FAIRLAMB, A.H. Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography. Journal of Medicinal Chemistry, v. 54(19):6514–6530, 2011.

SABO, J.A; ABDEL-RAHMAN, S.M. Voriconazole: a new triazole antifungal. Ann. Pharmacother. v.34, p. 1032-1043, 2000.

SALERNO, C; CARLUCCI, A.M; BREGNI, C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech, v.11, n.2, p. 986-993, 2010.

Schrödinger, L. Schrödinger Release 2021-2. New York: [s.n.], 2021

SINAN - Sistema de Informação de Agravos de Notificação. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/ltaam.def. 2021.

Downloads

Publicado

2024-06-26

Como Citar

Barros, A. M. C., Franco, A. M. R. ., Oliveira, M. D. L. ., Jensen, B. B. ., Lima, E. S. ., & Comandolli Wyrepkowski, C. D. . (2024). In vitro and in silico antileishmania activity of voriconazole (Vfend): Atividade antileishmania in vitro e in silico do voriconazol (Vfend). Concilium, 24(12), 556–568. https://doi.org/10.53660/CLM-3583-24M20

Edição

Seção

Artigos