An integrated in silico and in vitro approach for the identification of natural products tyrosinase inhibitors

Uma abordagem integrada in silico e in vitro para a identificação de produtos naturais inibidores da tirosinase

Autores

  • Nathan Ezequiel Chaves Universidade Comunitária da Região de Chapecó
  • Daniela Miorando
  • Aline Mânica
  • Walter Antonio Roman Junior Universidade Comunitária da Região de Chapecó - Unochapecó

Palavras-chave:

Medicinal plants, Flavonoids, Virtual screening, Melanin, Cytotoxicity

Resumo

The biosynthesis of melanin, the main protein involved in skin pigmentation, involves tyrosine, the enzyme tyrosinase, and ultraviolet radiation. However, an imbalance in this process can promote cutaneous hypermelanosis (CH), which causes spots on the skin. The CH treatment involves techniques and products with high adverse reactions. In this context, research has been increased into natural products. However, investigations using computational tools combined with evaluations of enzyme inhibition (in vitro) and toxicity tests are scarce. In this study, we evaluated thirteen bioactive compounds using virtual screening (SwissADME and SwissTarget Prediction software), and the most promising molecules were tested for tyrosinase inhibitory effects and cytotoxicity assays (MTT). Kaempferol, apigenin, and quercetin revealed better in silico bioavailability and tyrosinase inhibition parameters (94.8, 91.9, and 88.4%, respectively). Additionally, these molecules demonstrated different cytotoxicity profiles at 24 and 48 hours of exposure. Our evidence indicates that the flavonoids tested are promising agents in inhibiting tyrosinase.

Downloads

Não há dados estatísticos.

Referências

ABDELHADY M. I. S.; MOTAAL A. A. A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum. Revista Brasileira de Farmacognosia, v. 26, n. 6, p. 763-766, 2016. https://doi.org/10.1016/j.bjp.2016.06.004.

ANDRIS, E. et al. Can Copper(I) and Silver(I) be Hydrogen Bond Acceptors? Chemistry - A European Journal, v. 29, n. 26, p. 01-09, 24 mar. 2023. http://dx.doi.org/10.1002/chem.202203769.

BOISSY, R. E.; MANGA, P. On the Etiology of Contact/Occupational Vitiligo. Pigment Cell Research, v. 17, n. 3, p. 208-214, 11 maio 2004. http://dx.doi.org/10.1111/j.1600-0749.2004.00130.x.

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, v. 7, n. 1, p. 01-17, 3 mar. 2017. http://dx.doi.org/10.1038/srep42717.

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, v. 47, n. 1, p. 357-364, 20 maio 2019. http://dx.doi.org/10.1093/nar/gkz382.

DENG, X. H. et al. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro, Experimental and Therapeutic Medicine, v. 6, n. 5, p. 1155–1158, 2013. http://dx.doi.org/10.3892/etm.2013.1285.

FUKUI, M.; YAMABE, N.; ZHU, B. T. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. European Journal Of Cancer, v. 46, n. 10, p. 1882-1891, jul. 2010. http://dx.doi.org/10.1016/j.ejca.2010.02.004.

GUIDO, R. V. C. et al. Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados, v. 24, n. 70, p. 81-98, 2010. http://dx.doi.org/10.1590/s0103-40142010000300006.

HAMIDULLAH, R. et al. Quercetin-6- C - β -D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR path- way via aryl hydrocarbon receptor. Biochimie, vol. 119, pp. 68–79, 2015.

HOSSEINI, S.; KETABI, S.; HASHEMINASAB, G. QSAR study of antituberculosis activity of oxadiazole derivatives using DFT calculations. Journal of Receptors and Signal Transduction, v. 42, n. 5, p. 503-511, 9 mar. 2022. http://dx.doi.org/10.1080/10799893.2022.2044860.

JABLONSKI, N. G.; CHAPLIN, G. Human skin pigmentation as an adaptation to UV radiation. Proceedings of the National Academy of Sciences, v. 107, n. 2, p. 8962-8968, 5 maio 2010. http://dx.doi.org/10.1073/pnas.0914628107.

KANG, M. H. et al. Antioxidant and Anti-Melanogenic Activities of Heat-Treated Licorice (Wongam, Glycyrrhiza glabra × G. uralensis) Extract. Current Issues in Molecular Biology, v. 43, n. 2, p. 1171-1187, 18 set. 2021. http://dx.doi.org/10.3390/cimb43020083.

KHATIB, S. et al. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorganic & Medicinal Chemistry, v. 13, n. 2, p. 433-441, jan. 2005. http://dx.doi.org/10.1016/j.bmc.2004.10.010.

KIM, T.H.; KU, S.-K., BAE, J.-S. Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem. Toxicol. 50, 1118–1123, 2012. http://dx.doi.org/10.1016/j.fct.2011.12.004.

KISHORE, N. et al. Isolation of Flavonoids and Flavonoid Glycosides from Myrsine africana and Their Inhibitory Activities against Mushroom Tyrosinase. Journal of Natural Products, v. 81, n. 1, p. 49-56, 4 jan. 2018. http://dx.doi.org/10.1021/acs.jnatprod.7b00564.

KUENEMANN, M. A. et al. An exploration of the 3D chemical space has highlighted a specific shape profile for the compounds intended to inhibit protein-protein interactions. BMC Bioinformatics, v. 16, n. 3, p. 01-02, 13 fev. 2015. http://dx.doi.org/10.1186/1471-2105-16-s3-a5.

KUMARI, S. et al. Melanogenesis Inhibitors. Acta Dermato Venereologica, v. 98, n. 10, p. 924-931, 2018. http://dx.doi.org/10.2340/00015555-3002.

LIN, J. Y.; FISHER, D. E. Melanocyte biology and skin pigmentation. Nature, v. 445, n. 7130, p. 843-850, fev. 2007. http://dx.doi.org/10.1038/nature05660.

LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, v. 23, n. 1-3, p. 3-25, jan. 1997. http://dx.doi.org/10.1016/s0169-409x(96)00423-1.

MAHJOUB, T. T.; MILIBARY, H. H. Oral tranexamic acid in the treatment of hyperpigmentation disorder beyond melasma: a review. Journal of Cosmetic Dermatology, v. 22, n. 4, p. 1157-1162, 27 dez. 2022. http://dx.doi.org/10.1111/jocd.15561.

PASSERON, T.; PICARDO, M. Melasma, a photoaging disorder. Pigment Cell & Melanoma Research, v. 31, n. 4, p. 461-465, 12 jan. 2018. http://dx.doi.org/10.1111/pcmr.12684.

PNEUMAN, A. et al. Verification of eye and skin color predictors in various populations. Legal Medicine, v. 14, n. 2, p. 78-83, mar. 2012. http://dx.doi.org/10.1016/j.legalmed.2011.12.005.

RAVICHANDRAN, R. et al. The Interplay Between Sleep Disorders and Cardiovascular Diseases: a systematic review. Cureus, p. 01-09, 25 set. 2023. http://dx.doi.org/10.7759/cureus.45898.

SAW, C. L. L. et al. The berry constituents quercetin, kaempferol, and pterostilbene

synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE

signaling pathway. Food Chem. Toxicol. 72, 303–311, 2014. http://dx.doi.org/10.1016/j.fct.2014.07.038.

SIMOMURA V. L. et al. Aqueous extract of the bark of Uncaria tomentosa, an amazonian medicinal plant, promotes gastroprotection and accelerates gastric healing in rats. Journal of Ethnopharmacology, 2024 Mar 1;321:117542. doi: http://dx.doi.org/10.1016/j.jep.2023.117542.

SLOMINSKI, R. M. et al. Melanoma, Melanin, and Melanogenesis: the yin and yang relationship. Frontiers in Oncology, v. 12, p. 01-18, 14 mar. 2022. http://dx.doi.org/10.3389/fonc.2022.842496.

SOUZA NETO, L. R. et al. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, v. 8, p. 01-18, 18 fev. 2020. http://dx.doi.org/10.3389/fchem.2020.00093.

SPANAKIS, M. In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics, v. 15, n. 3, p. 1014, 22 mar. 2023. http://dx.doi.org/10.3390/pharmaceutics15031014.

SPANGE, S.; WEIß, N. Empirical Hydrogen Bonding Donor (HBD) Parameters of Organic Solvents Using Solvatochromic Probes – A Critical Evaluation. Chemphyschem, v. 24, n. 9, p. 01-20, 6 fev. 2023. http://dx.doi.org/10.1002/cphc.202200780.

TATAGIBA, A. B.; CRESWELL, J. W. Projeto de pesquisa: métodos qualitativo, quantitativo e misto; tradução magda lopes. 3 ed. porto alegre. Cadernos de Linguagem e Sociedade, v. 13, n. 1, p. 205-208, 3 jul. 2012. http://dx.doi.org/10.26512/les.v13i1.11610.

TEEKARAMAN, D. et al. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrin- sic apoptotic pathway in PA-1 cell line. Chemico-Biological Interactions, v. 300, p. 91–100, 2019. http://dx.doi.org/10.1016/j.cbi.2019.01.008.

VEBER, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, v. 45, n. 12, p. 2615-2623, 11 maio 2002. http://dx.doi.org/10.1021/jm020017n.

WATERBEEMD, H. V.; GIFFORD, E. ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery, v. 2, n. 3, p. 192-204, mar. 2003. http://dx.doi.org/10.1038/nrd1032.

YANG, D. et al. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity, v. 2020, Article ID 8825387, 13 pages https://doi.org/10.1155/2020/8825387.

YARDMAN FRANK, J. M.; FISHER, D. E. Skin pigmentation and its control: from ultraviolet radiation to stem cells. Experimental Dermatology, v. 30, n. 4, p. 560-571, 24 dez. 2020. http://dx.doi.org/10.1111/exd.14260.

ZHANG, Q. et al. A cream of herbal mixture to improve melasma. Journal of Cosmetic Dermatology, v. 18, n. 6, p. 1721-1728, 13 abr. 2019. http://dx.doi.org/10.1111/jocd.12938.

Downloads

Publicado

2024-04-27

Edição

Seção

Articles