Sustainable composites based on polypropylene and clay

Compósitos sustentáveis a base de polipropileno e argila

Autores

Palavras-chave:

Composites, Recycled HDPE, Natural fibers, Compatibilizer

Resumo

The production and consumption of plastic materials have been increasingly studied, since the excessive use of its raw material, oil, and its incorrect final destination can cause serious damage to the environment. For this reason, plastic recycling has been frequently used due to its economic, social and ecological viability. Due to reprocessing, plastics lose properties with each recycling cycle. To optimize the properties of plastics, which are often recycled, natural fibers are mixed with these materials, forming composites. Polymeric composites are increasingly used in a wide range of applications due to their excellent physical-mechanical properties. Recycled HDPE composites were obtained in a twin-screw extruder, with three different fibers in the presence and absence of compatibilizer. Overall, the presence of the fiber promoted a reduction in impact resistance and thermal deflection temperature. On the other hand, it provided an increase in the softening temperature of the composites. Considering the results obtained, the PEZMA composite resulted in a material with greater impact resistance and a higher softening temperature.

Downloads

Não há dados estatísticos.

Referências

ABIPLAST. PERFIL ABIPLAST 2022, 2022. Abiplast.org.br. Disponível em: https://www.abiplast.org.br/wp–content/uploads/2023/09/perfil_2022_pt.pdf. Acesso em 29 nov. 2023.

ARAÚJO, J. R. et al. Fractura y morfologia de compuestos de polipropileno reforzados con fibras de Curauá. Anales de Mecánica de la Fractura, v. 26, p. 181-186, 2009.

BHUIYAN. M.A.R. et al. Heat insulating jute-reinforced recycled polyethylene and polypropylene bio-composites for energy conservation in buildings. Materials Today Commnications, v. 37, 106948, 2023. DOI:10.1016/j.mtcomm.2023.106948.

ELFALEH, I. et al. A comprehensive review of natural fibers and their composites: Na eco-friendly alternative to conventional materials. Results in Engineering, v. 19, 101271, 2023. DOI:10.1016/j.rineng.2023.101271.

FERNANDES, J.R. et al. Nanopartículas de sílica silanizada como compatibilizante em compósitos de fibras sisal/polietileno. Polímeros, v. 27, p. 61–69, 2017. DOI:10.1590/0104-1428.2249.

ARINZE, R.U. et al. Mechanical impact evaluation of natural fibres with LDPE plastic composites: Waste management in perspective. Current Research in Green and Sustainable Chemistry, v. 5, 100344, 2022. DOI:10.1016/j.crgsc.2022.100344.

BINSHAN, M. et al. Comparative study of high–density polyethylene–based biocomposites reinforced with various agricultural residue fibers. Industrial Crops and Products. v.172, p.114053, 2021. DOI:10.1016/j.indcrop.2021.114053.

CONCEIÇÃO, A. L. C. Estudo de propriedades térmicas e mecânicas de compósito de polietileno de alta densidade e resíduo do tronco da palmeira de pupunha para uso como madeira plástica. 2019. 56f. Trabalho de Conclusão de Curso (Graduação em Engenharia Ambiental) – Universidade Federal do Rio de Janeiro, Rio de Janeiro.

FIRMINO, H.C.T. et al. Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Revista Matéria, v. 22, e11832, 2017. DOI: 10.1590/S1517-707620170002.0164.

KILIÇ, E. et al. Circularity of new composites from recycled high density polyethylene and leather waste for automotive bumpers. Testing performance and environmental impact. Science of the Total Environment, v. 919, 170413, 2024. DOI:10.1016/j.scitotenv.2024.170413.

LIU, Y. L. et al. Modifying wood veneer with silane coupling agent for decorating wood fiber/high–density polyethylene composite. Construction and Building Materials, v. 224, p. 691–699, 2019. DOI:10.1016/j.conbuildmat.2019.07.090.

LUSTOSA, E. C. et al. Propriedades térmicas de compósitos de acrilonitrila–butadieno–estireno (ABS) e fibras de celulose modificadas com nanopartículas de sílica (SIO2). Revista Matéria, v. 25, e–12784, 2020. DOI: 10.1590/S1517-707620200003.1084.

MOHANTY, S. et al. Short bamboo fiber–reinforced HDPE composites: influence of fiber content and modification on strength of the composite. Journal of Reinforced Plastics and Composites, v. 29, p. 2199–2210, 2010. DOI:10.1177/0731684409345618.

NASRI, K. et al. Experimental and numerical investigation of damage and mechanical property retention by bio-composite plastic made with flax or pinewood fiber and aged by exposure to ultraviolet light. Journal of Building Engineering, v. 79, 107899, 2023. Journal of Building Engineering, v. 79, 107899, 2023. DOI:10.1016/j.jobe.2023.107899.

PARVEZ, M.M.H. et al. Investigation of mechanical properties of rattan and bamboo fiber reinforced vinyl ester composite material for automotive application. Results in Materials, v. 19, 100437, 2023. DOI:10.1016/j.rinma.2023.100437.

SIDDIQUI, M.A.S. et al. Low-velocity impact response of natural fiber reinforced composites: A comprehensive review on influential parameters. Composites Part C: Open Access, v. 12, 100422, 2023. DOI:/10.1016/j.jcomc.2023.100422.

SOUSA, T. A. et al. Avaliação da resistência ao impacto de compósitos reforçados com fibras naturais. Cadernos UniFOA, v. 19, p. 21–29, 2012. DOI:10.47385/cadunifoa.v7.n19.1098.

TEIXEIRA, V.A.P.M. et al. Post-consumer PET/HDPE blends as an alternative route for marketing recycled materials. Concilium, v. 23, p. 433-440, 2023. DOI: 10.53660/CLM-1965-23N36.

TESFAW, S. et al. Evaluation of tensile and flexural strength properties of virgin and recycled high-density polyethylene (HDPE) for pipe fitting application. Materials Today: Proceedings, v. 62, p. 3103-3113, 2022. DOI:10.1016/j.matpr.2022.03.385.

Downloads

Publicado

2024-04-27

Edição

Seção

Articles