Early high fat diet exposure changes body composition, biochemical parameters and redox balance in Wistar male rats

Exposição precoce à dieta hiperlipidica altera a composição corporal, parâmetros bioquímicos e balanço redox em ratos Wistar machos

Autores

Palavras-chave:

Early high fat diet, Body composition, Obesity, Redox balance

Resumo

Obesity is a public health problem and one of the epidemiologically growing non-communicable chronic diseases. The aim of study was to evaluate the effects of early exposure high fat diet male rats on body composition, bone parameters and serum biochemical and redox balance. Wistar male rats at 30 days old were divided into 2 groups:  1) Control group: received commercial diet and filtered water ad libitum (C, n=20); and 2) High fat group: received a high fat diet and filtered water ad libitum (HF, n=20) until post-natal day 120 (PN120). At PN90 was analyzed body composition. At PN120 were analyzed food intake, body composition, biochemical parameters, bone parameters and serum redox balance. Early high fat diet exposure was able to induce obesity in rats and increase adiposity with lower lean mass, and lead to negative effects on serum biochemical parameters and redox balance, accompanied with changes in femur bone parameters. Thus, exposureWistar male rats after weaning to a high fat diet using lard as the main source of fat, mimicking Western diet, can lead to metabolic and body composition changes in adulthood, which cause obesity and increase the risk to develop non-communicable diseases.

Downloads

Não há dados estatísticos.

Referências

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3.

Bannister, J. V., & Calabrese, L. (1987). Assays for superoxide dismutase. Methods of biochemical analysis, 32, 279–312. https://doi.org/10.1002/9780470110539.ch5.

Beam, A., Clinger, E., & Hao, L. (2021). Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 13(8), 2795. https://doi.org/10.3390/nu13082795.

Belinskaia, D. A., Voronina, P. A., Shmurak, V. I., Jenkins, R. O., & Goncharov, N. V. (2021). Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. International Journal of Molecular Sciences, 22(19), 10318. https://doi.org/10.3390/ijms221910318.

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical biochemistry, 239, 70–76. https://doi.org/10.1006/abio.1996.0292.

Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/s0076-6879(78)52032-6.

Costa, C. A., Carlos, A. S., Gonzalez, G. P., Reis, R. P., Ribeiro, M. S., Dos Santos, A. S., et al. (2012). Diet containing low n-6/n-3 polyunsaturated fatty acids ratio, provided by canola oil, alters body composition and bone quality in young rats. European Journal of Nutrition, 51, 191–198. https://doi.org/10.1007/s00394-011-0206-3.

Cunniff, P., & Association of Official Analytical Chemists. (1997). Official methods of analysis of AOAC international. Association of Official Analytical Chemists.

Ellman, G. L. (1959). Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6.

Feriani, A., Bizzarri, M., Tir, M., Aldawood, N., Alobaid, H., Allagui, M. S. et al. (2021). High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. Ecotoxicology and Environmental Safety, 222, 112461. https://doi.org/10.1016/j.ecoenv.2021.112461.

Friedwald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502.

Gay, C. A., & Gebicki, J. M. (2023). Measurement of protein and lipid hydroperoxides in biological systems by the ferric–xylenol orange method. Analytical Biochemistry, 315(1), 29–35. https://doi.org/10.1016/s0003-2697(02)00606-1.

Gkastaris, K., Goulis, D. G., Potoupnis, M., Anastasilakis, A. D., & Kapetanos, G. Obesity, osteoporosis and bone metabolism. Journal of Musculoskeletal & Neuronal Interactions, 20(3), 372-381.

Hariri, N., & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews, 23(2), 270-299. https://doi.org/10.1017/s0954422410000168.

Huang, L. H., Liu, C. Y., Wang, L. Y., Huang, C. J., & Hsu CH. (2018). Effects of green tea extract on overweight and obese women with high levels of low density-lipoprotein-cholesterol (LDL-C): a randomised, double-blind, and cross-over placebo-controlled clinical trial. BMC Complementary and Alternative Medicine, 18(1), 294. https://doi.org/10.1186/s12906-018-2355-x.

Ibáñez, C. A., Erthal, R. P., Ogo, F. M., Peres, M. N. C., Vieira, H. R., Conejo, C. et al. (2017). A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise. Frontiers in Physiology, 8, 807. https://doi.org/10.3389/fphys.2017.00807.

Janaszewska, A., & Bartosz G. (2002). Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scandinavian Journal of Clinical and Laboratory Investigation, 62(3), 231–236. https://doi.org/10.1080/003655102317475498.

Kobylińska, M., Antosik, K., Decyk, A., & Kurowska, K. (2022). Malnutrition in Obesity: Is It Possible? Obesity Facts, 15, 19-25. https://doi.org/10.1159/000519503.

Latempa, A. M., Almeida, S. A., Nunes, N. F., da Silva, E. M., Guimarães, J. G., & Poskus, L. T. (2015). Techniques for restoring enlarged canals: an evaluation of fracture resistance and bond strength. International Endodontic Journal, 48, 28-36. https://doi.org/10.1111/iej.12272.

Lee, E. S., Kwon, M. H., Kim, H. M., Woo, H. B., Ahn, C. M., & Chung, C. H. (2020). Curcumin analog CUR5-8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism, 103, 154015. https://doi.org/10.1016/j.metabol.2019.154015.

Liu, J., Dong, H., Zhang, Y., Cao, M., Song, L., Pan, Q., Bulmer, A., Adams, D. B., Dong, X., & Wang, H. (2015). Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels. Scientific Reports, 5, 9886. https://doi.org/10.1038/srep09886.

Maciejczyk, M., Żebrowska, E., Zalewska, A., & Chabowski, A. (2018). Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance. Oxidative Medicine and Cellular Longevity, 018, 6940515. https://doi.org/10.1155/2018/6940515.

Magalhães, D. A., Kume, W. T., Correia, F. S., Queiroz, T. S., Allebrandt Neto, E. W., Santos, M. P. D., Kawashita, N. H., & França, S. A. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. Anais da Academia Brasileira de Ciências, 91(1), 20180314. https://doi.org/10.1590/0001-3765201920180314.

Magalhães, L. M., Segundo, M. A., Reis, S., & Lima JL. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1-19. https://doi.org/10.1016/j.aca.2008.02.047.

Mak, I. L., Lavery, P., Agellon, S., Rauch, F., Murshed, M., & Weiler, H. A. (2019). Arachidonic acid exacerbates diet-induced obesity and reduces bone mineral content without impacting bone strength in growing male rats. Journal of Nutritional Biochemistry, 73, 108226. https://doi.org/10.1016/j.jnutbio.2019.108226.

Margonis, K., Fatouros, I. G., Jamurtas, A. Z., Nikolaidis, M. G., Douroudos, I., Chatzinikolaou, A., Mitrakou A., Mastorakos, G., Papassotiriou, I., Taxildaris, K., & Kouretas, D. (2007). Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radical Biology and Medicine, 43(6), 901-10. https://doi.org/10.1016/j.freeradbiomed.2007.05.022.

Mesquita, C. S., Oliveira, R., Bento, F., Geraldo, D., Rodrigues, J. V., & Marcos, J.C. (2014). Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical Biochemistry, 458, 69-71. https://doi.org/10.1016/j.ab.2014.04.034.

Muniz, L. B., Alves-Santos, A. M., Camargo, F., Martins, D. B., Celes, M. R. N., & Naves, M. M. V. (2019). High-Lard and High-Cholesterol Diet, but not High-Lard Diet, Leads to Metabolic Disorders in a Modified Dyslipidemia Model. Arquivos Brasileiros de Cardiologia, 113(5), 896-902. https://doi.org/10.5935%2Fabc.20190149.

Park, S. J., Park, M., Sharma, A., Kim, K., & Lee, H. J. (2019). Black Ginseng and Ginsenoside Rb1 Promote Browning by Inducing UCP1 Expression in 3T3-L1 and Primary White Adipocytes. Nutrients, 11(11), 2747. https://doi.org/10.3390%2Fnu11112747.

Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry, 51(11), 3273-3279. https://doi.org/10.1021/jf0262256.

Reeves, P. G., Nielsen, F. H., & Fahey, G. C. Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition. 123(11), 1939-1951. https://doi.org/10.1093/jn/123.11.1939.

Segú, H., Jalševac, F., Pinent, M., Ardévol, A., Terra, X., & Blay, M. T. (2022). Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients, 14, 2608. https://doi.org/10.3390%2Fnu14132608.

Shamsi, F., Xue, R., Huang, T. L., Lundh, M., Liu, Y., Leiria, L. O. et al. (2020). FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 11(1), 1421. https://doi.org/10.1038/s41467-020-15055-9.

Shen, C. L., Han, J., Wang, S., Chung, E., Chyu, M. C., & Cao, J. J. (2015). Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet. Nutrition Research, 35(12), 1095-105. https://doi.org/10.1016/j.nutres.2015.09.014.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003.

Timmis, A., Vardas, P., Townsend, N., Torbica, A., Katus, H., De Smedt D et al. (2022). European Society of Cardiology: cardiovascular disease statistics. European Heart Journal, 43(8), 716-799. https://doi.org/10.1093/eurheartj/ehab892.

Turner, R. B. S., Tyrrell, D., Hepworth, G., Dunshea, F.R., & Mansfield, C. S. (2020). Compartmental fat distribution in the abdomen of dogs relative to overall body fat composition. BMC Veterinary Research, 16(1), 104. https://doi.org/10.1186/s12917-020-02327-1.

Ward, W. E., Kim, S., & Robert Bruce, W. (2003). A western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared with female rats during development. British Journal of Nutrition, 90(3), 589-95. https://doi.org/10.1079/bjn2003952.

World Health Organization (WHO). (2024). Obesity and overweight. Geneva.

Yamanaka, J. S., Yanagihara, G. R., Carlos, B. L., Ramos, J., Brancaleon, B. B., Macedo, A. P., Issa, J. P. M., & Shimano, A. C. (2018). A high-fat diet can affect bone healing in growing rats. Journal of Bone and Mineral Metabolism, 36(3), 255-263. https://doi.org/10.1007/s00774-017-0837-4.

Yeu, J., Ko, H. J., Kim, D., Ahn, Y., Kim, J., Lee, W., Jung, I., Suh, J., & Lee, S. J. (2019). Evaluation of iNSiGHT VET DXA (Dual-Energy X-ray Absorptiometry) for assessing body composition in obese rats fed with high fat diet: a follow-up study of diet induced obesity model for 8 weeks. Laboratory Animal Research, 35(2). https://doi.org/10.1186/s42826-019-0004-2.

Zalewska, A., Maciejczyk, M., Szulimowska, J., Imierska, M., & Błachnio-Zabielska, A. (2019). High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice. Biomolecules, 9(12), 877. https://doi.org/10.3390/biom9120877.

Zhang, X. Y., Guo, C. C., Yu, Y. X., Xie, L., & Chang, C. Q. (2020). Establishment of high-fat diet-induced obesity and insulin resistance model in rats. Beijing Da Xue Xue Bao Yi Xue Ban, 52(3), 557-563. https://doi.org/10.19723/j.issn.1671-167x.2020.03.024.

Zhu, R., Wang, Z., Xu, Y., Wan, H., Zhang, X., Song, M., Yang, H., Chai, Y., & Yu B. (2022). High-Fat Diet Increases Bone Loss by Inducing Ferroptosis in Osteoblasts. Stem Cells International, 9359429. https://doi.org/10.1155/2022/9359429.

Downloads

Publicado

2024-05-17

Edição

Seção

Articles