RNA-Based vaccine manufacturing: infrastructure, regulations, and global implications

Fabricaçãode vacinas de RNA: Infra-estrutura, regulamentos e implicações globais

Autores

  • Larissa Fonseca
  • Valdir Junior
  • Hayna Malta-Santos
  • Cristiano Ferreira
  • Cristiano Ferreira
  • Marcelo Moret
  • Luis Mascarenhas
  • Leone Andrade
  • Cintia Minafra
  • Bruna Aparecida Souza Machado SENAI CIMATEC

DOI:

https://doi.org/10.53660/CLM-3202-24G02

Palavras-chave:

RNA Vaccines, Vaccine Manufacturing Infrastructure, Regulatory Compliance, Equitable Vaccine Distribution

Resumo

RNA-based vaccines have emerged as a powerful tool in the fight against infectious diseases, including the recent COVID-19 pandemic. However, their successful production requires properly designed facilities for RNA synthesis, purification, and formulation. This review article explores the facility requirements, regulatory aspects, and global implications of specialized RNA vaccine production. It highlights the importance of Good Manufacturing Practice (GMP), equipment and technology in the production process, providing a critical analysis of collaborations, investments, and the establishment of RNA plants around the world. Finally, it addresses the challenges faced by low- and middle-income countries and the role of the "tripod" production model involving collaboration between university, industry, and government. Overall, this document clarifies the most relevant aspects of RNA-based vaccine manufacturing, emphasizing the need for quality, safety, and scalability to meet global health demands.

Downloads

Não há dados estatísticos.

Referências

ALFIERO, Simona; BRESCIA, Valerio; BERT, Fabrizio. Intellectual capital-based performance improvement: a study in healthcare sector. BMC Health Services Research 2021 21:1, vol. 21, no. 1, p. 1–15, 20 Jan. 2021. DOI 10.1186/S12913-021-06087-Y. Available at: https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-021-06087-y. Accessed on: 10 Jun. 2023.

AWASTHI, Sita; HOOK, Lauren M.; PARDI, Norbert; WANG, Fushan; MYLES, Arpita; CANCRO, Michael P.; COHEN, Gary H.; WEISSMAN, Drew; FRIEDMAN, Harvey M. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Science immunology, vol. 4, no. 39, 20 Sep. 2019. DOI 10.1126/SCIIMMUNOL.AAW7083. Available at: https://pubmed.ncbi.nlm.nih.gov/31541030/. Accessed on: 13 Nov. 2022.

BALLESTEROS-BRIONES, María Cristina; SILVA-PILIPICH, Noelia; HERRADOR-CAÑETE, Guillermo; VANRELL, Lucia; SMERDOU, Cristian. A new generation of vaccines based on alphavirus self-amplifying RNA. Current opinion in virology, vol. 44, p. 145–153, 1 Oct. 2020. DOI 10.1016/J.COVIRO.2020.08.003. Available at: https://pubmed.ncbi.nlm.nih.gov/32898764/. Accessed on: 13 Nov. 2022.

BLAKNEY, Anna K; IP, Shell; GEALL, Andrew J. An Update on Self-Amplifying mRNA Vaccine Development. 2021. DOI 10.3390/vaccines9020097. Available at: https://doi.org/10.3390/vaccines9020097. Accessed on: 15 Oct. 2023.

BORNEMANN, Manfred; ALWERT, Kay; WILL, Markus. Lessons learned in intellectual capital management in Germany between 2000 and 2020 – History, applications, outlook. Journal of Intellectual Capital, vol. 22, no. 3, p. 560–586, 2021. https://doi.org/10.1108/JIC-03-2020-0085/FULL/PDF. Accessed on: 8 Feb. 2023.

BRISSE, Morgan; VRBA, Sophia M.; KIRK, Natalie; LIANG, Yuying; LY, Hinh. Emerging Concepts and Technologies in Vaccine Development. Frontiers in immunology, vol. 11, 30 Sep. 2020. DOI 10.3389/FIMMU.2020.583077. Available at: https://pubmed.ncbi.nlm.nih.gov/33101309/. Accessed on: 13 Nov. 2022.

CHEN, Jinjin; YE, Zhongfeng; HUANG, Changfeng; QIU, Min; SONG, Donghui; LI, Yamin; XU, Qiaobing. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 34, p. e2207841119, 23 Aug. 2022. DOI 10.1073/PNAS.2207841119/SUPPL_FILE/PNAS.2207841119.SAPP.PDF. Available at: https://www.pnas.org/doi/abs/10.1073/pnas.2207841119. Accessed on: 15 Oct. 2023.

CHOONARA, Y E; NDOMONDO-SIGONDA, M; KANA, Bavesh D; ARBUTHNOT, Patrick; BOTWE, Benjamin K; CHOONARA, Yahya E; HASSAN, Fatima; LOUZIR, Hechmi; MATSOSO, Precious; MOORE, Penny L; MUHAIRWE, Apollo; NAIDOO, Kubendran; NDOMONDO-SIGONDA, Margareth; MADHI, Shabir A. Opportunities and challenges of leveraging COVID-19 vaccine innovation and technologies for developing sustainable vaccine manufacturing capabilities in Africa. The Lancet Infectious Diseases, vol. 0, no. 0, Jun. 2023. DOI 10.1016/S1473-3099(22)00878-7. Available at: http://www.thelancet.com/article/S1473309922008787/fulltext. Accessed on: 10 Jun. 2023.

COHEN, Jon. New crop of mRNA vaccines aim for accessibility. Science, vol. 376, no. 6589, p. 120–121, 8 Apr. 2022. https://doi.org/10.1126/SCIENCE.ABQ3935. Accessed on: 10 Jun. 2023.

COMES, Jerome D G; PIJLMAN, Gorben P; HICK, Tessy A H. Rise of the RNA machines-self-amplification in mRNA vaccine design. 2023. DOI 10.1016/j.tibtech.2023.05.007. Available at: https://doi.org/10.1016/j.tibtech.2023.05.007. Accessed on: 19 Oct. 2023.

CUREVAC. Homepage - CureVac. 2022. Available at: https://www.curevac.com/. Accessed on: 13 Nov. 2022.

CYRANOSKI, David. What China’s speedy COVID vaccine deployment means for the pandemic. Nature, vol. 586, no. 7829, p. 343–344, Oct. 2020. https://doi.org/10.1038/D41586-020-02807-2.

DE NEGRI, Fernanda; DE HOLANDA, Flávia; SQUEFF, Schmidt. Investimentos em P&D do governo norte-americano: evolução e principais características. http://www.ipea.gov.br, 2014. Available at: https://repositorio.ipea.gov.br/handle/11058/3317. Accessed on: 17 Jan. 2023.

DE NEGRI, Fernanda; KOELLER, Priscila. Políticas públicas para pesquisa e inovação em face da crise da Covid-19. http://www.ipea.gov.br, 2020. Available at: https://repositorio.ipea.gov.br/handle/11058/10034. Accessed on: 17 Jan. 2023.

DE RASSENFOSSE, Gaétan; JAFFE, Adam; RAITERI, Emilio. The procurement of innovation by the U.S. government. PLOS ONE, vol. 14, no. 8, p. e0218927, 1 Aug. 2019. DOI 10.1371/JOURNAL.PONE.0218927. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218927. Accessed on: 16 Oct. 2023.

DENAULT, Jean-Francois; COQUET, Agnes;; DODELET, Vincent. Construction and Start-Up Costs for Biomanufacturing Plants. Feb. 2008. BioProcess International. .

FIX, Alan; KIRKWOOD, Carl D.; STEELE, Duncan; FLORES, Jorge. Next-generation rotavirus vaccine developers meeting: Summary of a meeting sponsored by PATH and the bill & melinda gates foundation. Vaccine, vol. 38, no. 52, p. 8247–8254, 14 Dec. 2020a. DOI 10.1016/J.VACCINE.2020.11.034. Available at: https://pubmed.ncbi.nlm.nih.gov/33234304/. Accessed on: 17 Jan. 2023.

FIX, Alan; KIRKWOOD, Carl D.; STEELE, Duncan; FLORES, Jorge. Next-generation rotavirus vaccine developers meeting: Summary of a meeting sponsored by PATH and the bill & melinda gates foundation (19–20 June 2019, Geneva). Vaccine, vol. 38, no. 52, p. 8247–8254, 14 Dec. 2020b. https://doi.org/10.1016/J.VACCINE.2020.11.034. Accessed on: 10 Jun. 2023.

FONSECA, Elize Massard da; SHADLEN, Kenneth C.; ACHCAR, Helena de Moraes. Vaccine technology transfer in a global health crisis: Actors, capabilities, and institutions. Research Policy, vol. 52, no. 4, p. 104739, 1 May 2023. DOI 10.1016/J.RESPOL.2023.104739. Available at: /pmc/articles/PMC9907960/. Accessed on: 10 Jun. 2023.

GADELHA, Carlos A. Grabois. O Complexo Econômico-Industrial da Saúde 4.0: por uma visão integrada do desenvolvimento econômico, social e ambiental. Cadernos do Desenvolvimento, vol. 16, no. 28, p. 25–50, 18 Mar. 2021. Available at: http://www.cadernosdodesenvolvimento.org.br/ojs-2.4.8/index.php/cdes/article/view/550. Accessed on: 10 Jun. 2023.

GADELHA, Carlos Augusto Grabois; TEMPORÃO, José Gomes. Development, Innovation and Health: the theoretical and political perspective of the Health Economic-Industrial Complex. Ciência & Saúde Coletiva, vol. 23, no. 6, p. 1891–1902, 1 Jun. 2018. DOI 10.1590/1413-81232018236.06482018. Available at: https://www.scielo.br/j/csc/a/vBqrtdjpbqDjh9ZBTycxyrj/abstract/?lang=en. Accessed on: 10 Jun. 2023.

HALD ALBERTSEN, Camilla; KULKARNI, Jayesh A.; WITZIGMANN, Dominik; LIND, Marianne; PETERSSON, Karsten; SIMONSEN, Jens B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, vol. 188, p. 114416, 1 Sep. 2022. https://doi.org/10.1016/J.ADDR.2022.114416. Accessed on: 15 Oct. 2023.

HARRISON, Roger G.; TODD, Paul W.; RUDGE, Scott R.; PETRIDES, Demetri P. Bioprocess Design and Economics. Bioseparations Science and Engineering, 9 Apr. 2015. DOI 10.1093/OSO/9780195391817.003.0015. Available at: https://academic.oup.com/book/40711/chapter/348471277. Accessed on: 13 Nov. 2022.

HAYMAN, Benoit; KUMAR SURI, Rajinder; DOWNHAM, Matthew. Sustainable vaccine manufacturing in low- and middle-Income countries. Vaccine, vol. 40, no. 50, p. 7288–7304, 28 Nov. 2022. https://doi.org/10.1016/J.VACCINE.2022.10.044. Accessed on: 15 Oct. 2023.

HOLTKAMP, Silke; KREITER, Sebastian; SELMI, Abderraouf; SIMON, Petra; KOSLOWSKI, Michael; HUBER, Christoph; TÜRECI, Özlem; SAHIN, Ugur. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, vol. 108, no. 13, p. 4009–4017, 15 Dec. 2006. DOI 10.1182/BLOOD-2006-04-015024. Available at: https://dx.doi.org/10.1182/blood-2006-04-015024. Accessed on: 15 Oct. 2023.

HOMMA, Keiichi; NOGUCHI, Tamotsu; FUKUCHI, Satoshi. Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains. Nucleic Acids Research, vol. 44, no. 21, p. 10051, 12 Dec. 2016. DOI 10.1093/NAR/GKW899. Available at: /pmc/articles/PMC5137448/. Accessed on: 15 Oct. 2023.

HOU, Xucheng; ZAKS, Tal; LANGER, Robert; DONG, Yizhou. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials 2021 6:12, vol. 6, no. 12, p. 1078–1094, 10 Aug. 2021. DOI 10.1038/s41578-021-00358-0. Available at: https://www.nature.com/articles/s41578-021-00358-0. Accessed on: 13 Nov. 2022.

JACKSON, Nicholas A.C.; KESTER, Kent E.; CASIMIRO, Danilo; GURUNATHAN, Sanjay; DEROSA, Frank. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines, vol. 5, no. 1, p. 1–6, Dec. 2020. https://doi.org/10.1038/s41541-020-0159-8.

JOE, Carina C.D.; JIANG, Jinlin; LINKE, Thomas; LI, Yuanyuan; FEDOSYUK, Sofiya; GUPTA, Gaurav; BERG, Adam; SEGIREDDY, Rameswara R.; MAINWARING, David; JOSHI, Amar; CASHEN, Paul; REES, Byron; CHOPRA, Nitin; NESTOLA, Piergiuseppe; HUMPHREYS, Jonathan; DAVIES, Sarah; SMITH, Nick; BRUCE, Scott; VERBART, Dennis; … DOUGLAS, Alexander D. Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnology and bioengineering, vol. 119, no. 1, p. 48–58, Jan. 2022. https://doi.org/10.1002/BIT.27945.

KARIKÓ, Katalin; BUCKSTEIN, Michael; NI, Houping. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, vol. 23, p. 165–175, 2005. https://doi.org/10.1016/j.immuni.2005.06.008. Accessed on: 15 Oct. 2023.

KAVANAGH, Matthew M.; GOSTIN, Lawrence O.; SUNDER, Madhavi. Sharing Technology and Vaccine Doses to Address Global Vaccine Inequity and End the COVID-19 Pandemic. JAMA, vol. 326, no. 3, p. 219, Jul. 2021. https://doi.org/10.1001/jama.2021.10823.

KHALID, Khizer; PADDA, Jaskamal; KHEDR, Anwar; ISMAIL, Dina; ZUBAIR, Ujala; AL-EWAIDAT, Ola A; PADDA, Sandeep; CHARLENE COOPER, Ayden; JEAN-CHARLES, Gutteridge; HEALTH HOSPITAL, Orlando. HIV and Messenger RNA (mRNA) Vaccine. JC) Medical Center, 2021. https://doi.org/10.7759/cureus.16197. Accessed on: 15 Oct. 2023.

KIM, Byungji; HOSN, Ryan R; REMBA, Tanaka; YUN, Dongsoo; LI, Na; ABRAHAM, Wuhbet; MELO, Mariane B; CORTES, Manuel; LI, Bridget; ZHANG, Yuebao; DONG, Yizhou; IRVINE, Darrell J. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. Journal of Controlled Release, vol. 353, p. 241–253, 2023. DOI 10.1016/j.jconrel.2022.11.022. Available at: http://creativecommons.org/licenses/by/4.0/. Accessed on: 19 Oct. 2023.

KIM, Jerome H.; MARKS, Florian; CLEMENS, John D. Looking beyond COVID-19 vaccine phase 3 trials. Nature Medicine, , p. 1–7, Jan. 2021. https://doi.org/10.1038/s41591-021-01230-y.

KIM, Sun Chang; SEKHON, Simranjeet Singh; SHIN, Woo Ri; AHN, Gna; CHO, Byung Kwan; AHN, Ji Young; KIM, Yang Hoon. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Molecular & Cellular Toxicology, vol. 18, no. 1, p. 1, 1 Jan. 2022. DOI 10.1007/S13273-021-00171-4. Available at: /pmc/articles/PMC8450916/. Accessed on: 15 Oct. 2023.

KIS, Zoltán; KONTORAVDI, Cleo; DEY, Antu K.; SHATTOCK, Robin; SHAH, Nilay. Rapid development and deployment of high‐volume vaccines for pandemic response. Journal of Advanced Manufacturing and Processing, vol. 2, no. 3, Jul. 2020. DOI 10.1002/AMP2.10060. Available at: /pmc/articles/PMC7361221/. Accessed on: 15 Oct. 2023.

KIS, Zoltán; KONTORAVDI, Cleo; SHATTOCK, Robin; SHAH, Nilay. Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. 2020. DOI 10.3390/vaccines. Available at: https://dx.doi.org/10.3390/vaccines. Accessed on: 15 Oct. 2023.

KIS, Zoltan; RIZVI, Zain. How to Make Enough Vaccine for the World in One Year. Public Citizen, , p. 1–37, 2021. .

KIS, Zoltán;; RIZVI, Zain. How to Make Enough Vaccine for the World in One Year. 26 May 2021. Public Citizen. Available at: https://www.citizen.org/article/how-to-make-enough-vaccine-for-the-world-in-one-year/. Accessed on: 15 Nov. 2022.

KNEZEVIC, Ivana; LIU, Margaret A.; PEDEN, Keith; ZHOU, Tiequn; KANG, Hye Na. Development of mRNA Vaccines: Scientific and Regulatory Issues. Vaccines, vol. 9, no. 2, p. 1–11, 1 Feb. 2021. DOI 10.3390/VACCINES9020081. Available at: /pmc/articles/PMC7910833/. Accessed on: 6 Dec. 2023.

KNIPE, David M.; LEVY, Ofer; FITZGERALD, Katherine A.; MÜHLBERGER, Elke. Ensuring vaccine safety: Comprehensive safety testing is based on experience with prior vaccines. Science, vol. 370, no. 6522, p. 1274–1275, 11 Dec. 2020. DOI 10.1126/SCIENCE.ABF0357/ASSET/C913E8B4-1B2C-4A3B-9BDB-007309CE6248/ASSETS/GRAPHIC/370_1274_F1.JPEG. Available at: https://www.science.org/doi/10.1126/science.abf0357. Accessed on: 10 Jun. 2023.

KOIRALA, Archana; JOO, Ye Jin; KHATAMI, Ameneh; CHIU, Clayton; BRITTON, Philip N. Vaccines for COVID-19: The current state of play. Paediatric respiratory reviews, vol. 35, p. 43–49, 1 Sep. 2020. DOI 10.1016/J.PRRV.2020.06.010. Available at: https://pubmed.ncbi.nlm.nih.gov/32653463/. Accessed on: 13 Nov. 2022.

KON, Edo; ELIA, Uri; PEER, Dan. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Current Opinion in Biotechnology, vol. 2022, p. 329–336, 2021. DOI 10.1016/j.copbio.2021.09.016. Available at: https://doi.org/10.1016/j.copbio.2021.09.016. Accessed on: 15 Oct. 2023.

LARSEN, Sasha E; BALDWIN, Susan L; COLER, Rhea N. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? International Journal of Infectious Diseases, vol. 130, no. 1, p. 47–51, 2023. DOI 10.1016/j.ijid.2023.03.035. Available at: https://doi.org/10.1016/j.ijid.2023.03.035. Accessed on: 25 Dec. 2023.

LEDFORD, Heidi; CYRANOSKI, David; VAN NOORDEN, Richard. The UK has approved a COVID vaccine — here’s what scientists now want to know. Nature, vol. 588, no. 7837, p. 205–206, Dec. 2020. https://doi.org/10.1038/d41586-020-03441-8.

LUNDSTROM, Kenneth. Replicon RNA Viral Vectors as Vaccines. [s. d.]. DOI 10.3390/vaccines4040039. Available at: www.mdpi.com/journal/vaccines. Accessed on: 6 Dec. 2023.

MACHADO, Bruna Aparecida Souza; HODEL, Katharine Valéria Saraiva; FONSECA, Larissa Moraes Dos Santos; MASCARENHAS, Luís Alberto Brêda; ANDRADE, Leone Peter Correia da Silva; ROCHA, Vinícius Pinto Costa; SOARES, Milena Botelho Pereira; BERGLUND, Peter; DUTHIE, Malcolm S.; REED, Steven G.; BADARÓ, Roberto. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines, vol. 9, no. 11, 1 Nov. 2021. DOI 10.3390/VACCINES9111345. Available at: https://pubmed.ncbi.nlm.nih.gov/34835276/. Accessed on: 13 Nov. 2022.

MACHADO, Bruna Aparecida Souza; HODEL, Katharine Valéria Saraiva; FONSECA, Larissa Moraes Dos Santos; PIRES, Vinícius Couto; MASCARENHAS, Luis Alberto Brêda; DA SILVA ANDRADE, Leone Peter Correia; MORET, Marcelo Albano; BADARÓ, Roberto. The Importance of Vaccination in the Context of the COVID-19 Pandemic: A Brief Update Regarding the Use of Vaccines. Vaccines, vol. 10, no. 4, 1 Apr. 2022. https://doi.org/10.3390/vaccines10040591.

MARIANO, Presidente; LAPLANE, Francisco; DE MIRANDA, Marcio; DIRETORES, Santos; CARLOS, Antonio; GALVÃO, Filgueira; GOMES, Gerson; MESSIAS DE SOUZA, José. The Brazilian Innovation System: A Mission-Oriented Policy Proposal Centro de Gestão e Estudos Estratégicos. [s. d.]. . Accessed on: 10 Jun. 2023.

MARUGGI, Giulietta; ZHANG, Cuiling; LI, Junwei; ULMER, Jeffrey B.; YU, Dong. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Molecular therapy : the journal of the American Society of Gene Therapy, vol. 27, no. 4, p. 757–772, 10 Apr. 2019a. DOI 10.1016/J.YMTHE.2019.01.020. Available at: https://pubmed.ncbi.nlm.nih.gov/30803823/. Accessed on: 13 Nov. 2022.

MARUGGI, Giulietta; ZHANG, Cuiling; LI, Junwei; ULMER, Jeffrey B.; YU, Dong. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Molecular Therapy, vol. 27, no. 4, p. 757–772, 10 Apr. 2019b. DOI 10.1016/j.ymthe.2019.01.020. Available at: https://pubmed.ncbi.nlm.nih.gov/30803823/. Accessed on: 12 Jan. 2021.

MCKAY, Paul F.; HU, Kai; BLAKNEY, Anna K.; SAMNUAN, Karnyart; BROWN, Jonathan C.; PENN, Rebecca; ZHOU, Jie; BOUTON, Clément R.; ROGERS, Paul; POLRA, Krunal; LIN, Paulo J.C.; BARBOSA, Christopher; TAM, Ying K.; BARCLAY, Wendy S.; SHATTOCK, Robin J. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature communications, vol. 11, no. 1, 1 Dec. 2020. DOI 10.1038/S41467-020-17409-9. Available at: https://pubmed.ncbi.nlm.nih.gov/32647131/. Accessed on: 13 Nov. 2022.

NAIK, Ramachandra; PEDEN, Keith. Regulatory Considerations on the Development of mRNA Vaccines. Current Topics in Microbiology and Immunology, vol. 440, p. 187–205, 2022. DOI 10.1007/82_2020_220/COVER. Available at: https://link.springer.com/chapter/10.1007/82_2020_220. Accessed on: 10 Jun. 2023.

NEUMANN, Peter J; COHEN, Joshua T; KIM, David D; OLLENDORF, Daniel A. Consideration Of Value-Based Pricing For Treatments And Vaccines Is Important, Even In The COVID-19 Pandemic. Health Affairs, vol. 40, no. 1, p. 53–61, Jan. 2021. https://doi.org/10.1377/hlthaff.2020.01548.

OLIVEIRA, Nelson. Vacinas brasileiras lutam para ir além da pesquisa básica. 2021. Senado.org. Available at: https://www12.senado.leg.br/noticias/infomaterias/2021/02/vacinas-brasileiras-lutam-para-ir-alem-da-pesquisa-basica. Accessed on: 19 Jan. 2023.

OPERATION WARP SPEED: IMPLICATIONS FOR GLOBAL VACCINE SECURITY LANCET COMMISSION ON COVID-19 VACCINES AND THERAPEUTICS TASK FORCE MEMBERS*. [s. d.]. DOI 10.1016/S2214-109X(21)00140-6. Available at: www.thelancet.com/lancetgh. Accessed on: 16 Oct. 2023.

PARDI, Norbert; HOGAN, Michael J.; PORTER, Frederick W.; WEISSMAN, Drew. mRNA vaccines - a new era in vaccinology. Nature reviews. Drug discovery, vol. 17, no. 4, p. 261–279, 28 Mar. 2018. DOI 10.1038/NRD.2017.243. Available at: https://pubmed.ncbi.nlm.nih.gov/29326426/. Accessed on: 13 Nov. 2022.

PENG, Shaoliang; HU, Xing; ZHANG, Jinglin; XIE, Xiaolan; LONG, Chengnian; TIAN, Zhihui; JIANG, Hongbo. An Efficient Double-Layer Blockchain Method for Vaccine Production Supervision. IEEE transactions on nanobioscience, vol. 19, no. 3, p. 579–587, 1 Jul. 2020. DOI 10.1109/TNB.2020.2999637. Available at: https://pubmed.ncbi.nlm.nih.gov/32603300/. Accessed on: 13 Nov. 2022.

POLACK, Fernando P.; THOMAS, Stephen J.; KITCHIN, Nicholas; ABSALON, Judith; GURTMAN, Alejandra; LOCKHART, Stephen; PEREZ, John L.; PÉREZ MARC, Gonzalo; MOREIRA, Edson D.; ZERBINI, Cristiano; BAILEY, Ruth; SWANSON, Kena A.; ROYCHOUDHURY, Satrajit; KOURY, Kenneth; LI, Ping; KALINA, Warren V.; COOPER, David; FRENCK, Robert W.; HAMMITT, Laura L.; … GRUBER, William C. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine, vol. 383, no. 27, p. 2603–2615, 31 Dec. 2020. DOI 10.1056/NEJMOA2034577. Available at: https://pubmed.ncbi.nlm.nih.gov/33301246/. Accessed on: 13 Nov. 2022.

POLICY CURES RESEARCH. COVID-19 R&D tracker. 2021. Available at: https://www.policycuresresearch.org/covid-19-r-d-tracker. Accessed on: 17 Jan. 2023.

RAUCH, Susanne; LUTZ, Johannes; KOWALCZYK, Aleksandra; SCHLAKE, Thomas; HEIDENREICH, Regina. RNActive® technology: Generation and testing of stable and immunogenic mRNA vaccines. Methods in Molecular Biology, vol. 1499, p. 89–107, 2017. DOI 10.1007/978-1-4939-6481-9_5/COVER. Available at: https://link.springer.com/protocol/10.1007/978-1-4939-6481-9_5. Accessed on: 15 Oct. 2023.

RAWAT, Kajal; KUMARI, Puja; SAHA, Lekha. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. European Journal of Pharmacology, vol. 892, 5 Feb. 2021. DOI 10.1016/j.ejphar.2020.173751. Available at: https://pubmed.ncbi.nlm.nih.gov/33245898/. Accessed on: 20 Jan. 2021.

RIECKERMANN. VIETNAM’S FIRST MRNA COVID-19 VACCINE PRODUCTION FACILITY - Rieckermann %. 2022. Available at: https://rieckermann.com/en/news/rieckermann-designs-vietnams-first-mrna-covid-19-vaccine-production-facility/. Accessed on: 17 Jan. 2023.

ROSA, Sara Sousa; PRAZERES, Duarte M.F.; AZEVEDO, Ana M.; MARQUES, Marco P.C. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, vol. 39, no. 16, p. 2190–2200, Apr. 2021. https://doi.org/10.1016/j.vaccine.2021.03.038.

SAVAGE, Neil. An mRNA vaccine industry in the making. Nature, vol. 598, no. 7882, p. S30–S31, Jan. 2021. https://doi.org/10.1038/D41586-021-02913-9.

SCHLAKE, Thomas; THESS, Andreas; FOTIN-MLECZEK, Mariola; KALLEN, Karl Josef. Developing mRNA-vaccine technologies. RNA biology, vol. 9, no. 11, p. 1319–1330, 2012. DOI 10.4161/RNA.22269. Available at: https://pubmed.ncbi.nlm.nih.gov/23064118/. Accessed on: 13 Nov. 2022.

SOUSA ROSA, Sara; PRAZERES, Duarte M F; AZEVEDO, Ana M; MARQUES, Marco P C. mRNA vaccines manufacturing: Challenges and bottlenecks. [s. d.]. DOI 10.1016/j.vaccine.2021.03.038. Available at: https://doi.org/10.1016/j.vaccine.2021.03.038. Accessed on: 30 Jul. 2023.

SU, Zhongfeng; PENG, Mike W; XIE, En. A Strategy Tripod Perspective on Knowledge Creation Capability. British Journal of Management, vol. 00, p. 1–19, 2015. https://doi.org/10.1111/1467-8551.12097. Accessed on: 10 Jun. 2023.

TENCHOV, Rumiana; BIRD, Robert; CURTZE, Allison E.; ZHOU, Qiongqiong. Lipid Nanoparticles from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, vol. 15, no. 11, p. 16982–17015, 23 Nov. 2021. DOI 10.1021/ACSNANO.1C04996/ASSET/IMAGES/MEDIUM/NN1C04996_0026.GIF. Available at: https://pubs.acs.org/doi/full/10.1021/acsnano.1c04996. Accessed on: 15 Oct. 2023.

THE LANCET. COVID-19 vaccine equity and booster doses. 2021. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360703/. Accessed on: 17 Jan. 2023.

TO, Kenneth K.W.; CHO, William C.S. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery, vol. 16, no. 11, p. 1307–1317, 2 Nov. 2021. DOI 10.1080/17460441.2021.1935859. Available at: https://www.tandfonline.com/doi/abs/10.1080/17460441.2021.1935859. Accessed on: 15 Oct. 2023.

TOMBÁCZ, István; WEISSMAN, Drew; PARDI, Norbert. Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination. Methods in molecular biology (Clifton, N.J.), vol. 2197, p. 13–31, 2021. https://doi.org/10.1007/978-1-0716-0872-2_2.

ULMER, Jeffrey B.; MANSOURA, Monique K.; GEALL, Andrew J. Vaccines “on demand”: science fiction or a future reality. Expert opinion on drug discovery, vol. 10, no. 2, p. 101–106, 1 Feb. 2015. DOI 10.1517/17460441.2015.996128. Available at: https://pubmed.ncbi.nlm.nih.gov/25582273/. Accessed on: 13 Nov. 2022.

VACCINE DEVELOPMENT, TESTING, AND REGULATION | HISTORY OF VACCINES. [s. d.]. .

VAN DE BERG, Damien; KIS, Zoltán; FREDRIK BEHMER, Carl; SAMNUAN, Karnyart; BLAKNEY, Anna K; KONTORAVDI, Cleo; SHATTOCK, Robin; SHAH, Nilay. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. [s. d.]. DOI 10.1038/s41541-021-00322-7. Available at: https://doi.org/10.1038/s41541-021-00322-7. Accessed on: 15 Oct. 2023.

VICKERS, Julie; CRAMER, Peter; EARDLEY-PATEL, Ranna;; EXCELL, Oliver. Overcoming Engineering Challenges to Enable Commercial Scale mRNA Vaccine Manufacturing. Aug. 2022. BioPharm International. Available at: https://www.biopharminternational.com/view/overcoming-engineering-challenges-to-enable-commercial-scale-mrna-vaccine-manufacturing. Accessed on: 13 Nov. 2022.

WANG, Chang; ZHANG, Yuebao; DONG, Yizhou. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Accounts of Chemical Research, vol. 54, no. 23, p. 4283–4293, 7 Dec. 2021. DOI 10.1021/ACS.ACCOUNTS.1C00550/ASSET/IMAGES/MEDIUM/AR1C00550_0009.GIF. Available at: https://pubs.acs.org/doi/epdf/10.1021/acs.accounts.1c00550. Accessed on: 15 Oct. 2023.

WEBB, Cameron; IP, Shell; BATHULA, Nuthan V.; POPOVA, Petya; SORIANO, Shekinah K.V.; LY, Han Han; ERYILMAZ, Burcu; NGUYEN HUU, Viet Anh; BROADHEAD, Richard; RABEL, Martin; VILLAMAGNA, Ian; ABRAHAM, Suraj; RAEESI, Vahid; THOMAS, Anitha; CLARKE, Samuel; RAMSAY, Euan C.; PERRIE, Yvonne; BLAKNEY, Anna K. Current Status and Future Perspectives on MRNA Drug Manufacturing. Molecular Pharmaceutics, vol. 19, no. 4, p. 1047–1058, 4 Apr. 2022. DOI 10.1021/ACS.MOLPHARMACEUT.2C00010/ASSET/IMAGES/LARGE/MP2C00010_0006.JPEG. Available at: https://pubs.acs.org/doi/full/10.1021/acs.molpharmaceut.2c00010. Accessed on: 5 Jan. 2024.

WORLD HEALTH ORGANIZATION. Evaluation of the quality, safety and efficacy of messenger RNA vaccines for the prevention of infectious diseases: regulatory considerations. Oct. 2021. WHO. Available at: https://www.who.int/publications/m/item/evaluation-of-the-quality-safety-and-efficacy-of-messenger-rna-vaccines-for-the-prevention-of-infectious-diseases-regulatory-considerations. Accessed on: 13 Nov. 2022.

WORLD HEALTH ORGANIZATION. Good Manufacturing Practices for Sterile Pharmaceutical Products. 2011. WHO Technical Report Series. .

WOUTERS, Olivier J; SHADLEN, Kenneth C; SALCHER-KONRAD, Maximilian; POLLARD, Andrew J; LARSON, Heidi J; TEERAWATTANANON, Yot; JIT, Mark. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Health Policy www.thelancet.com, vol. 397, 2021. DOI 10.1016/S0140-6736(21)00306-8. Available at: https://doi.org/10.1016/. Accessed on: 10 Jun. 2023.

ZHANG, Lizhou; MORE, Kunal R; OJHA, Amrita; JACKSON, Cody B; QUINLAN, Brian D; LI, Hao; HE, Wenhui; FARZAN, Michael; PARDI, Norbert; CHOE, Hyeryun. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. [s. d.]. DOI 10.1038/s41541-023-00751-6. Available at: https://doi.org/10.1038/s41541-023-00751-6. Accessed on: 15 Oct. 2023.

ZICKGRAF, S. Final Report Summary - INCAS (Intellectual capital statement - made in Europe) | FP6 | CORDIS | European Commission. 2019. Available at: https://cordis.europa.eu/project/id/30485/reporting. Accessed on: 7 Feb. 2023.

Downloads

Publicado

2024-04-13

Como Citar

Fonseca, L., Junior, V. ., Malta-Santos, H. ., Ferreira, C., Ferreira, C. ., Moret, M. ., Mascarenhas, L., Andrade, L., Minafra, C., & Machado, B. A. S. (2024). RNA-Based vaccine manufacturing: infrastructure, regulations, and global implications: Fabricaçãode vacinas de RNA: Infra-estrutura, regulamentos e implicações globais. Concilium, 24(7), 268–294. https://doi.org/10.53660/CLM-3202-24G02

Edição

Seção

Artigos