Molybdenum trioxide (MoO3): a scoping review of its properties, synthesis and applications

Trióxido de molibdênio (MoO3): uma revisão de escopo de suas propriedades, síntese e aplicações

Autores

Palavras-chave:

Molybdenum trioxide, Physicochemical properties, Nanotechnology

Resumo

Molybdenum trioxide is an inorganic compound of great scientific and technological relevance due to its unique characteristics, which result in wide applicability. This review article discusses several synthesis methodologies and applications of MoO3, highlighting its physicochemical properties, especially crystalline structure, oxidizing activity and thermal behavior. Furthermore, the industrial specificity of this oxide is addressed, from the areas of catalysis, electrochemistry and electronics, to optics, corroborating the relevance, future research perspectives and potential innovations related to it, especially in the context of nanotechnology.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lizandra Viana Maurat da Rocha, Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Brasil

Dra. em Ciências, Ciência e Tecnologia de Polímeros. Bacharela em Nanotecnologia, com ênfase em Bionano. Pós-graduada em Psicopedagogia;  pós-graduada em Educação Ambiental e Sustentabilidade com Habilitação em Docência no Ensino Superior; pós-graduada e licenciada em Química. Pesquisadora de pós-doutorado no Instituto de Macromoléculas Professora Eloisa Mano (IMA/UFRJ) Contato (cel/WA): (21) 983723134 CV: http://lattes.cnpq.br/1288564053740038

Referências

ADHIKARI, S.; KIM, D.-H. Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B. Applied Surface Science, [s.l.], v. 511, p. 145595, 2020.

AFRIDHA, M. S. H. F.; PRAKASH, S. H.; ROOPAN, S. M. MoO3 based nanocomposites for the photocatalytic degradation of colourants – A review. Journal of the Taiwan Institute of Chemical Engineers, [s.l.], In Press, 105354, 2024.

ALBDIRY, M. T. et al. A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. Journal of Composite Materials, [s.l.], v. 47, n. 9, 2012.

ALROWAILI, Z. A. et al. A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Optical and Quantum Electronics, [s.l.], v. 54, n. 88, 2022.

ALSHAMMARI, A. H. et al. Processing polymer film nanocomposites of polyvinyl chloride – Polyvinylpyrrolidone and MoO3 for optoelectronic applications. Optics & Laser Technology, [s.l.], v. 168, p.109833, 2024.

ALTHAGAFI, T. M. et al. The Impact of Changing the LiF Concentration on Structural, Thermal, Physical, and Optical Properties of CdO—SiO2—B2O3—MoO3—LiF Glasses. Silicon, [s.l.], v. 15, p. 7047–7056, 2023.

ATEŞ, A.; HATIPOĞLU, H. Synthesis and characterization of molybdenum trioxide with an orthorhombic crystal structure for supercritical water gasification application. Journal of Molecular Structure, [s.l.], v. 1275, p. 134563, 2023.

ATKINS, P. W.; JONES, L.; LAVERMAN, L. Princípios de química: questionando a vida moderna e o meio ambiente. 7a edição. Porto Alegre: Bookman, 2018.

AVANI, A.V.; ANILA, E.I. Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions. International Journal of Hydrogen Energy, [s.l.], v. 47, n. 47, p. 20475-20493, 2022.

BALENDHRAN, S. et. al. Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide. Advanced Materials, [s.l.], v. 25, n. 1, p. 109–114, 2013a.

BALENDHRAN, S. et al. Two-Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, [s.l.], v. 23, n. 32, p. 3952–3970, 2013b.

BANDARU, S. et al. Tweaking the Electronic and Optical Properties of α-MoO3 by Sulphur and Selenium Doping – a Density Functional Theory Study. Scientific Reports, [s.l.], v. 8, p. 10144, 2018.

BEHMADI, R. et al. Investigation of chalcopyrite removal from low-grade molybdenite using response surface methodology and its effect on molybdenum trioxide morphology by roasting. RSC Advances, [s.l.], v. 13, n.22, p. 14899-14913, 2023.

BHARATE, B. G. Synthesis of Molybdenum Oxide Nanoparticles by Sol-Gel Method for Ammonia Gas Sensing. Biomedical Journal of Scientific & Technical Research, Westchester, v. 37, n. 1, p. 29172-29175, 2020.

BRÜCKMAN, K. et al. The role of different MoO3 crystal faces in elementary steps of propene oxidation. Journal of Catalysis, [s.l.], v. 104, n. 1, p. 71-79, 1987.

CAO, Y. et al. Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst. Applied Catalysis A: General, [s.l.], v. 589, p. 117308, 2020.

CARCIA, P. F.; MCCARRON III, E.M. Synthesis and properties of thin film polymorphs of molybdenum trioxide. Thin Solid Films, [s.l.], v. 155, n. 1, p. 53-63, 1987.

CHEN, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nature Materials, [s.l.], v. 19, p. 1307–1311, 2020.

CHIANG, T. H.; YEH, H. C. The Synthesis of α-MoO3 by ethylene glycol. Materials, [s.l.], v. 6, n. 10, p. 4609–4625, 2013.

CHITHAMBARARAJ, A.; BOSE, A. C. Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. Journal of Alloys and Compounds, [s.l.], v. 509, n. 31, p. 8105-8110, 2011.

CHITHAMBARARAJ, A.; YOGAMALAR, N. R.; BOSE, A. C. Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport. Crystal Growth & Design, Washington, v. 16, n. 4, p. 1984–1995, 2016.

CHOI, D. K. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nature Communications, [s.l.], v. 12, 2864, 2021.

DA ROCHA, L. V. M.; DA SILVA, P. S. R. C.; TAVARES, M. I. B. Thermostructural evaluation of poly(butylene adipate-co-terephthalate)/molybdenum trioxide nanocomposites through time domain nuclear magnetic resonance and other conventional techniques. Brazilian Journal of Development, [S. l.], v. 8, n. 5, p. 36588–36601, 2022.

DA ROCHA, L. V. M. et al. Biodegradable packing food films based on PBAT containing ZnO and MoO3. Journal of Applaied Polymer Science, [s.l.], Online Version of Record before inclusion in an issue, e55294, 2024.

DA SILVA JÚNIOR, M. G. et al. A Brief Review of MoO3 and MoO3-Based Materials and Recent Technological Applications in Gas Sensors, Lithium-Ion Batteries, Adsorption, and Photocatalysis. Materials, Basel, v. 16, n. 24, p. 7657, 2023.

DE CASTRO, I. A. et al. Molybdenum Oxides – From Fundamentals to Functionality. Advanced Materials, [s.l.], v. 29, n. 40, p. 1–31, 2017.

DHARMARAJ, D. et al. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology, [s.l.], v. 61, n. 102111, 2021.

DING, J. et al. Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. Journal of Power Sources, [s.l.], v. 348, p. 270-280, 2017.

DING, Q. P. et al. Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum. Journal of Crystal Growth, [s.l.], v. 294, n. 2, p. 304-308, 2006.

DIZAJ, S. M. et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, [s.l.], v. 44, p. 278–284, 2014.

ELSAYED, A. M. et al. Highly Uniform Spherical MoO2-MoO3/Polypyrrole Core-Shell Nanocomposite as an Optoelectronic Photodetector in UV, Vis, and IR Domains. Micromachines, Basel, v. 14, n. 9, p. 1694, 2023.

ESAKKIRAJAN, M. et al. Environmentally sustainable synthesis of MoO3 nanoparticles: Antibacterial efficacy and biocompatibility assessment. Chemical Physics Impact, [s.l.], v. 8, p. 100487, 2024.

FAKHRI, A.; NEJAD, P. A. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. Journal of photochemistry and photobiology. B, Biology, [s.l.], v. 159, p. 211–217, 2016.

FENG, C. et al. Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochimica Acta, [s.l.], v. 93, p. 101-106, 2013.

FU, S. et al. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, [s.l.], v. 1, n. 1, p. 2-30, 2019.

GACITUA, W.; BALLERINI, A.; ZHANG, J. Polymer Nanocomposites: Synthetic And Natural Fillers A Review. Maderas: Ciencia y Tecnologia, Concepción, v. 7, n. 3, p. 159-178, 2005.

GAO, Q. et al. Oxygen vacancy mediated α-MoO3 bactericidal nanocatalyst in the dark: Surface structure dependent superoxide generation and antibacterial mechanisms. Journal of Hazardous Materials, [s.l.], v. 443, Part B, p. 130275, 2023.

GIORDANO, N. et al. Structure and catalytic activity of MoO3 · SiO2 systems: III. Mechanism of oxidation of propylene. Journal of Catalysis, [s.l.], v. 50, n. 2, p. 342-352, 1977.

GOLD, K. et al. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Advanced Therapeutics, [s.l.], v. 1, n. 3, p. 1700033, 2018.

GUPTA, U. C. et al. Role of Micronutrients: Boron and Molybdenum in Crops and in Human Health and Nutrition. Current Nutrition & Food Science, [s.l.], v. 7, n. 2, p. 126-136, 2011.

HABER, J.; LALIK, E. Catalytic properties of MoO3 revisited. Catalysis Today, [s.l.], v. 33, n. 1–3, p. 119-137, 1997.

HASSAN, M. F. et al. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. Journal of Power Sources, [s.l.], v. 195, n. 8, p. 2372-2376, 2010.

HUANG, J.; ZHOU, J.; LIU, M. Interphase in Polymer Nanocomposites. JACS Au, Washington, v. 2, n. 2, p. 280–291, 2022.

IIZUKA, Y. et al. The catalysis of carbon monoxide oxidation with oxygen on molybdenum trioxide. Journal of Catalysis, [s.l.], v. 64, n. 2, p. 437-447, 1980.

KHILLA, M.A. et al. Transport properties of molybdenum trioxide and its suboxides. Thermochimica Acta, [s.l.], v. 54, n. 1–2, p. 35-45, 1982.

KLINBUMRUNG, A.; THONGTEM, T.; THONGTEM, S. Characterization of Orthorhombic α-MoO3 Microplates Produced by a Microwave Plasma Process. Nanocrystals-Related. Synthesis, Assembly, and Energy Applications, [s.l.], v. 2012, 2012.

KOTZ, J. C. et al. Química Geral e Reações Químicas. 3a edição - 3a edição - Tradução da 9a edição norte-americana ed. [s.l.] Editora Cengage, 2015.

KUMAR, V.; WANG, X.; LEE, P. S. Formation of hexagonal-molybdenum trioxide (h-MoO3) nanostructures and their pseudocapacitive behavior. Nanoscale, [s.l.], v. 7, p. 11777-11786, 2015.

KURNIAWAN, T. A. et al. Influence of Fe2O3 and bacterial biofilms on Cu(II) distribution in a simulated aqueous solution: A feasibility study to sediments in the Pearl River Estuary (PR China). Journal of Environmental Management, [s.l.], v. 329, n. 117047, 2023.

LI, J.; LIU, X. Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Materials Letters, [s.l.], v. 112, p. 39-42, 2013.

LI, X.-L.; LIU, J.-F. ; LI, Y.-D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts. Applied Physics Letters, [s.l.], v. 81, p. 4832–4834, 2002.

LIU, D. et al. High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO3. Journal of Applied Physics, [s.l.], v. 105, n.2, p. 023513, 2009.

LV, X. et al. In-situ investigation on the thermal decomposition of van der Waals MoO3. Chemical Physics Letters, [s.l.], v. 779, p. 138840, 2021.

MEDEIROS, S. A. S. L.; FARIAS, A. F. F.; SANTOS, I. M. G. Síntese de Trióxido de Molibdênio com Diferentes Estruturas e Microestruturas pelo Método Pechini Modificado: Uma Nova Proposta Metodológica. Revista Virtual de Quimica, [s.l.], v. 13, n. 2, p. 494-508, 2021.

MEGHANA, S. et al. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances, [s.l.], v. 5, n. 16, p. 12293-12299, 2015.

MOURA, J. V. B. et al. Temperature-induced phase transition in h-MoO3: Stability loss mechanism uncovered by Raman spectroscopy and DFT calculations. Vibrational Spectroscopy, [s.l.], v. 98, p. 98-104, 2018.

NAGYNÉ-KOVÁCS, T. et al. Hydrothermal Synthesis and Gas Sensing of Monoclinic MoO3 Nanosheets. Nanomaterials, Basel, v. 10, n. 5, p. 891, 2020.

NARESH, N.; JENA, P.; SATYANARAYANA, N. Facile synthesis of MoO3/rGO nanocomposite as anode materials for high performance lithium-ion battery applications, Journal of Alloys and Compounds, [s.l.], v. 810, p. 51920, 2019.

NOVOTNY, J. A. Molybdenum Nutriture in Humans. Journal of Evidence-Based Complementary & Alternative Medicine, [s.l.], v. 16, n. 3, p. 164-168, 2011.

OMANOVIĆ-MIKLIČANIN, E. et al. Nanocomposites: a brief review. Health and Technology, [s.l.], v. 10, p. 51–59, 2020.

PINTO, B. F. et al. Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: Screening of substrates for biodiesel production. Fuel, [s.l.], v. 239, p. 290-296, 2019.

PUEBLA, S. et al. In-plane anisotropic optical and mechanical properties of two-dimensional MoO3. npj 2D Materials and Applications, [s.l.], v. 5, n. 37, 2021.

RAJ, A. N. P.; BENNIE, R.B.; XAVIER, G.A.I. Influence of Ag Doped MoO3 Nanoparticles in the Seedling Growth and Inhibitory Action Against Microbial Organisms. Journal of Cluster Science, [s.l.], v. 8, 2021.

RAJESHAM, S.; KUMAR, J. S. Physical and optical properties of MoO3 doped B2O3-CdO-Al2O3-CaF2 glasses. Materials Today: Proceedings, [s.l.], v. 92, n. 2, p. 1587-1590, 2023.

RAKHI, C.; PREETHA, K. C. An Investigation of the Thermal Treatment Effects on the Structural, Morphological, and Optical Properties of Hydrothermally Synthesized Hexagonal Molybdenum Oxide Micro-Rods. Journal of Electronic Materials, [s.l.], v. 52, p. 3719–3728, 2023.

RANGA, C. et al. Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chemical Engineering Journal, [s.l.], v. 335, p.120-132, 2018.

SCHOENITZ, M.; UMBRAJKAR, S.; DREIZIN, E. L. Kinetic Analysis of Thermite Reactions in Al-MoO3 Nanocomposites. Journal of Propulsion and Power, Reston, v. 23, n. 4, p. 683, 2007.

SEN, S. K. et al. Structural and optical properties of sol-gel synthesized h-MoO3 nanorods treated by gamma radiation. Nano Express, [s.l.], v. 1, n.2, p. 020026, 2020.

SHAHAB-UD-DIN et al. Hydrothermal synthesis of molybdenum trioxide, characterization and photocatalytic activity. Materials Research Bulletin, [s.l.], v. 100, p. 120-130, 2018.

SHAHEEN, I.; AHMAD, K. S. Modified sol gel synthesis of MoO3 NPs using organic template: synthesis, characterization and electrochemical investigations. Journal of Sol-Gel Science and Technology, [s.l.], v. 97, p. 178–190, 2021.

SICILIANO, T. et al. Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Materials Chemistry and Physics, [s.l.], v. 114, n. 2–3, p. 687-691, 2009.

SIDDIQUI, M. F.; KHAN, E. A.; KHAN, T. A. Synthesis of MoO3/polypyrrole nanocomposite and its adsorptive properties toward cadmium(II) and nile blue from aqueous solution: Equilibrium isotherm and kinetics modeling. Environmental Progress & Sustainable Energy, [s.l.], v. 38, n. 6, e13249, 2019.

SONG, J. et al. Preparation and optical properties of hexagonal and orthorhombic molybdenum trioxide thin films. Materials Letters, [s.l.], v. 95, p. 190-192, 2013.

SONG, Y. et al. Aqueous synthesis of molybdenum trioxide (h-MoO3, α-MoO3·H2O and h-/α-MoO3 composites) and their photochromic properties study. Journal of Alloys and Compounds, [s.l.], v. 693, p. 1290-1296, 2017.

STAMATIS, D.; DREIZIN, E. L.; HIGA, K. Thermal Initiation of Al-MoO3 Nanocomposite Materials Prepared by Different Methods. Journal of Propulsion and Power, Reston, v. 27, n. 5, p. 1079, 2011.

SUMER, A. Molybdenum Oxide Clusters: Structure, Stability, and Electronic Properties. Journal of Physical Chemistry A, Washington, v. 125, n. 23, p. 5201–5211, 2021.

SUNDEEP, D. et al. Spectral characterization of mechanically synthesized MoO3-CuO nanocomposite. International Nano Letters, [s.l.], v. 6, p. 119–128, 2016.

TITO, Miragaia Peruzzo; CANTO, Eduardo Leite. Química na Abordagem do Cotidiano - Volume único. 1ª edição. São Paulo: Saraiva, 2015.

WANG, B. et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nature Communications, [s.l.], v. 11, n. 2405, 2020.

WANG, F.; UEDA, W. High Catalytic Efficiency of Nanostructured Molybdenum Trioxide in the Benzylation of Arenes and an Investigation of the Reaction Mechanism. Chemistry A European Journal, [s.l.], v. 15, n. 3, p. 742-753, 2009.

WANG, W. et al. Achieving Fully Reversible Conversion in MoO3 for Lithium Ion Batteries by Rational Introduction of CoMoO4. ACS Nano [s.l.], v. 10, n. 11, p. 10106–10116, 2016.

WANG, X. et al. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage. Angewandte Chemie - International Edition, [s.l.], v. 57, n. 36, p. 11569–11573, 2018.

WINEY, K.I.; VAIA, R. A. Polymer Nanocomposites. MRS Bulletin, [s.l.], v. 32, p. 314–322, 2007.

WU, C. et al. Confining Tiny MoO2 Clusters into Reduced Graphene Oxide for Highly Efficient Low Frequency Microwave Absorption. Small, [s.l.], v. 16, n. 30, p. 2001686, 2020.

XIA, T. et al. Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide. Journal of Physical Chemistry B, Washington, v. 110, n. 5, p. 2006–2012, 2006.

XU, J. et al. Synergistic co-catalytic nanozyme system for highly efficient one-pot colorimetric sensing at neutral pH: Combining molybdenum trioxide and Fe(III)-Modified covalent triazine framework. Analytical Biochemistry, [s.l.], v. 685, p. 115391, 2024.

YU, M. et al. Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, [s.l.], v.11, n. 1348, 2020.

ZENG, W., et al. Up-down conversion luminescence and drug-loading capability of novel MoO3-x based carriers. Advanced Powder Technology, [s.l.], v. 32, n. 11, p. 4373–4383, 2021.

ZHAI, X. et al. Fe2O3 Nanorod/Bacterial Cellulose Carbon Nanofiber Composites for Enhanced Acetone Sensing. ACS Applied Nano Materials, [s.l.], v. 6, n. 13, p. 12168–12176, 2023.

ZHANG, Y. et al. Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots. Small, [s.l.], v. 17, n. 1. p. 39, 2021.

ZHAO, X. et al. Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries. Carbon, [s.l.], v. 156, p.445-452, 2020.

ZHAO, Y. et al. In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique. Surface and Coatings Technology, [s.l.], v. 397, n. 125992, 2020.

ZHOU, J. et al. PVDF reinforced with core–shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. Journal of Polymer Research, [s.l.], v. 29, n. 72, 2022.

ZHOU, L. et al. α-MoO3 Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, v. 114, n. 49, p. 21868–21872, 2010.

ZHU, H.-Y. et al. Reduction characteristics of molybdenum trioxide with aluminum and silicon. Rare Metals, [s.l.], v. 37, p. 621–624, 2018.

ZHU, Y. et al. Nanostructured MoO3 for Efficient Energy and Environmental Catalysis. Molecules, Basel, v. 25, n. 1, p. 18, 2020.

ZOLLFRANK, C. et al. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Materials Science and Engineering C, [s.l.], v. 32, n. 1, p. 47–54, 2012.

Downloads

Publicado

2024-04-03

Edição

Seção

Articles