HPV replicative cycle and role of viral proteins in lesion progression

Ciclo replicativo do HPV e papel das proteínas virais na progressão da lesão

Autores

Palavras-chave:

Human papillomaviruses, cervical cancer, viral proteins, oncogenesis

Resumo

Human papillomaviruses are DNA viruses that primarily infect the stratified squamous epithelium of the genital tract mucosa. Some of these viruses are strongly associated with cervical cancer. They are sexually transmitted agents that are highly prevalent around the world. Most infections heal spontaneously, in approximately 18 to 24 months, but in some individuals, the virus persists in a latent, asymptomatic form or a productive form, causing cervical intraepithelial lesions that may progress to result in invasive cervical cancer. During productive infection, the virus executes a complex interaction program with the host cell dependent on differentiation and, through its proteins, nullifies the host cell's protective mechanisms against malignant transformation and suppresses the host's immune responses. Initial lesions may spontaneously revert, but those that reach a certain stage, if not treated, progress to malignant forms. In this review, we present some advances in the biology of HPV infection and the role of its proteins in the interaction with the host cell and its consequences.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jenner Chrystian Veríssimo de Azevedo, Universidade Federal do Rio Grande do Norte

 

 

Amanda Estevam Carvalho, Universidade do Estado do Rio Grande do Norte

 

 

 

Josélio Maria Galvão de Araújo, Universidade Federal do Rio Grande do Norte

 

 

Vânia Sousa Andrade, Universidade Federal do Rio Grande do Norte

 

 

Ricardo Ney Oliveira Cobucci, Universidade Federal do Rio Grande do Norte

 

 

Christiane Medeiros Bezerra, Universidade Federal do Rio Grande do Norte

 

 

Referências

BAEDYANANDA, F.; SASIVIMOLRATTANA, T.; CHAIWONGKOT, A.;, VARADARAJAN, S.; BHATTARAKOSOL, P. Role of HPV16 E1 in cervical carcinogenesis. Front Cell Infect Microbiol, v. 12, p. 1–7, 2022. DOI: https://doi.org/10.3389/fcimb.2022.955847

BALAJI, D.; KALARANI, I.B.; MOHAMMED, V.; VEERABATHIRAN, R. Potential role of human papillomavirus proteins associated with the development of cancer. Virus Disease, v. 33, p. 322–333, 2022. DOI: https://doi.org/10.1007/s13337-022-00786-8

BERNARD, H. U.; BURK, R.D.; CHEN, Z.; DOORSLAER, K. VAN; HAUSEN, H. ZUR; VILLIERS, E.M. Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments. Virology, v. 401, p. 70–79, 2010. DOI: https://doi.org/10.1016/j.virol.2010.02.002

BERTI, F. C. B.; PEREIRA, A. P. L.; CEBINELLI, G. C. M.; TRUGILO, K. P.; BRAJÃO DE OLIVEIRA, K. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine Growth Factor Rev, v. 34, p. 1–13, 2017. DOI: https://doi.org/10.1016/j.cytogfr.2017.03.002

BHATTACHARJEE, R.; DAS, S. S.; BISWAL, S. S.; et al.: Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit Rev Oncol Hematol, v. 174, p. 1–17, 2022. DOI: https://doi.org/10.1016/j.critrevonc.2022.103675

BIENKOWSKA-HABA, M.; ZWOLINSKA, K.; KEIFFER, T.; SCOTT, R. S.; SAPP, M. Human Papillomavirus Genome Copy Number Is Maintained by S-Phase Amplification, Genome Loss to the Cytosol during Mitosis, and Degradation in G1 Phase. J Virol, v. 97, p. 1–21, 2023. DOI/; https://doi.org/10.1128/jvi.01879-22

BURLEY, M.; ROBERTS, S.; PARISH, J. L. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol, v. 42, p. 159–171, 2020. DOI: https://doi.org/10.1007/s00281-019-00773-0

CASTRO-MUÑOZ, L. J.; MANZO-MERINO, J.; MUÑOZ-BELLO, J. O.; et al.: The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response. Sci Rep, v. 9, p. 1–13, 2019. DOI: https://doi.org/10.1038/s41598-019-49886-4

CHOI, S.; ISMAIL, A.; PAPPAS-GOGOS, G.; BOUSSIOS, S. HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK. Pathogens, v. 12, p. 1–16, 2023. DOI: https://doi.org/10.3390/pathogens12020298

COSPER, P.F.; BRADLEY, S.; LUO, L.; KIMPLE, R.J. Biology of HPV Mediated Carcinogenesis and Tumor Progression. Semin Radiat Oncol, v. 31, p. 265–273, 2021. DOI: https://doi.org/10.1016/j.semradonc.2021.02.006

DELLA FERA, A. N.; WARBURTON, A.; COURSEY, T. L.; KHURANA, S.; MCBRIDE, A. A. Persistent human papillomavirus infection. Viruses, v. 13, p. 1–16, 2021. DOI: https://doi.org/10.3390/v13020321

de SANJOSÉ, S.; BROTONS, M.; PAVÓN, M.A. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol, v. 47, p. 2–13, 2018. DOI: https://doi.org/10.1016/j.bpobgyn.2017.08.015

DIMAIO, D.; PETTI, L. The E5 Proteins. Virology, v. 445, p. 99–114, 2013. DOI: https://doi.org/10.1016/j.virol.2013.05.006

DOORBAR, J. The E4 protein; structure, function and patterns of expression. Virology, v. 445, p. 80–98, 2013. DOI: https://doi.org/10.1016/j.virol.2013.07.008

DIGIUSEPPE, S.; BIENKOWSKA-HABA, M.; GUION, L. G.; SAPP, M. Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus. Virus Res, v. 231, p. 1–9, 2017. DOI: https://doi.org/10.1016/j.virusres.2016.10.015

EGAWA, N.; WANG, Q.; GRIFFIN, H. M.; MURAKAMI, I.; JACKSON, D.; MAHMOOD, R.; DOORBAR, J. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLoS Pathog, v. 13, p. 1–38, 2017. DOI: https://doi.org/10.1371/journal.ppat.1006282

EVANDE, R.; RANA, A.; BISWAS-FISS, E. E.; BISWAS, S.B. Protein–DNA Interactions Regulate Human Papillomavirus DNA Replication, Transcription, and Oncogenesis. Int J Mol Sci, v. 24, p. 1–16, 2023. DOI: https://doi.org/10.3390/ijms24108493

FINKE, J.; MIKULIČIĆ, S.; LOSTER, A. L.; GAWLITZA, A.; FLORIN, L.; LANG, T. Anatomy of a viral entry platform differentially functionalized by integrins α3 and α6. Sci Rep, v. 10, p. 1–17, 2020. DOI: https://doi.org/10.1038/s41598-020-62202-9

FONS, N. R.; KINES, R. C.; THOMPSON, C.D.; DAY, P. M.; LOWY, D. R.; SCHILLER, J. T. Chondroitin Sulfate Proteoglycans Are De Facto Cellular Receptors for Human Papillomavirus 16 under High Serum Conditions. J Virol, v. 96, p. 1–21, 2022. DOI: https://doi.org/10.1128/jvi.01857-21

GRAHAM, S. V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin Sci, v. 131, p. 2201–2221, 2017. DOI: https://doi.org/10.1042/CS20160786

GUTIERREZ-XICOTENCATL, L.; PEDROZA-SAAVEDRA, A.; CHIHU-AMPARAN L, SALAZAR-PIÑA A, MALDONADO-GAMA M AND ESQUIVEL-GUADARRAMA F: Cellular functions of HPV16 E5 oncoprotein during oncogenic transformation. Mol Cancer Res, v. 19, p. 167–179, 2021. DOI: https://doi.org/10.1158/1541-7786.MCR-20-0491

HARDEN, M. E.; MUNGER, K. Human papillomavirus molecular biology. Mutat Res - Rev Mutat Res, v. 772, p. 3–12, 2017. DOI: https://doi.org/10.1016/j.mrrev.2016.07.002

HARWOOD, M. C.; WOO, T. T.; TAKEO, Y.; DIMAIO, D.; TSAI, B. HPV is a cargo for the COPI sorting complex during virus entry. Sci Adv, v. 9, p. 1–18, 2023. DOI: https://doi.org/10.1126/sciadv.adc9830

HASAN, U. A.; ZANNETTI, C.; PARROCHE, P.; et al.: The Human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J Exp Med, v. 210, p. 1369–1387, 2013. DOI: https://doi.org/10.1084/jem.20122394

HOCHMANN, J.; PARIETTI, F.; MARTÍNEZ, J. et al.: Human papillomavirus type 18 e5 oncoprotein cooperates with e6 and e7 in promoting cell viability and invasion and in modulating the cellular redox state. Mem Inst Oswaldo Cruz, v. 115, p. 1–11, 2020. DOI: https://doi.org/10.1590/0074-02760190405

HU, L; POTAPOVA, T. A.; LI, S.; RANKIN, S.; GORBSKY, G. J.; ANGELETTI, P. C.; CERESA, B. P. Expression of HPV16 E5 produces enlarged nuclei and polyploidy through endoreplication. Virology, v. 405, p. 342–351, 2010. DOI: https://doi.org/10.1016/j.virol.2010.06.025

JIANG, P.; YUE, Y. Human papillomavirus oncoproteins and apoptosis (Review). Exp Ther Med, v. 7, p. 3–7, 2014. DOI: https://doi.org/10.3892/etm.2013.1374

KADAJA, M.; SILLA, T.; USTAV, E.; USTAV, M. Papillomavirus DNA replication - From initiation to genomic instability. Virology, v. 384, p. 360–368, 2009. DOI: https://doi.org/10.1016/j.virol.2008.11.032

KALITERNA, V.; BARISIC, Z. Genital human papillomavirus infections. Front Biosci - Landmark, v. 23, p. 1587–1611, 2018. DOI: https://doi.org/10.2741/4662

KHALIL, M. I.; YANG, C.; VU, L.; et al.: HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog, v. 19, p. 1–28, 2023. DOI: https://doi.org/10.1371/journal.ppat.1011171

KHURANA, S.; MARKOWITZ, T. E.; KABAT, J.; MCBRIDE, A. A. Spatial and Functional Organization of Human Papillomavirus Replication Foci in the Productive Stage of Infection. MBio, v. 12, p. 1–23, 2021. DOI: https://doi.org/10.1128/mBio.02684-21

LAI, K.Y. et al. A ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathogens, v. 17, n.5, p. 1–26, 2021. DOI: https://doi.org/10.1371/journal.ppat.1009580

LI, Y.; XU, C. Human papillomavirus-related cancers. Adv Exp Med Biol, v. 1018, p. 23–34, 2017. DOI: https://doi.org/10.1007/978-981-10-5765-6_3

LIU, H; XU J, YANG Y, et al. Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proc Natl Acad Sci U S A, v. 118, p. 1–12, 2021. DOI: https://doi.org/10.1073/pnas.2014195118

LIU, X.; DAKIC, A.; ZHANG, Y.; DAI, Y.; CHEN, R.; SCHLEGEL, R. HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A, v. 106, p. 18780–18785, 2009. DOI: https://doi.org/10.1073/pnas.0906357106

MALIK, S.; SAH, R.; MUHAMMAD, K.; WAHEED, Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines, v. 11, p. 1–16, 2023. DOI: https://doi.org/10.3390/vaccines11010102

MCKINNEY, C. C.; HUSSMANN, K. L.; MCBRIDE, A. A. The role of the DNA damage response throughout the papillomavirus life cycle. Viruses, v. 7, p. 2450–2469, 2015. DOI: https://doi.org/10.3390/v7052450

MCLAUGHLIN-DRUBIN, M. E.; MÜNGER, K. The Human Papillomavirus E7 Oncoprotein. Virology, v. 384, p. 335–344, 2009. DOI: https://doi.org/10.1016/j.virol.2008.10.006

MIYAUCHI S, KIM SS, JONES RN, et al.: Human papillomavirus E5 suppresses immunity via inhibition of the immunoproteasome and STING pathway. Cell Rep, v. 42, 1–20, 2023. DOI: https://doi.org/10.1016/j.celrep.2023.112508

MOODY, C. A.; LAIMINS, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat Rev Cancer, v. 10, p. 550–560, 2010. DOI: https://doi.org/10.1038/nrc2886

MOODY, C.A. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses, v. 9, p. 1–21, 2017. DOI: https://doi.org/10.3390/v9090261

NTANASIS-STATHOPOULOS, I.; KYRIAZOGLOU, A; LIONTOS, M; DIMOPOULOS, M.A.; GAVRIATOPOULOU, M. Current trends in the management and prevention of human papillomavirus (HPV) infection. J buon, v. 25, p. 1281–1285, 2020. https://www.jbuon.com/archive/25-3-1281.pdf

OH, J. M.; KIM, S. H.; CHO, E. A.; SONG, Y. S.; KIM, W. H.; JUHNN, Y. S. Human papillomavirus type 16 E5 protein inhibits hydrogen peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells. Carcinogenesis, v. 31, p. 402–410, 2010. DOI: https://doi.org/10.1093/carcin/bgp318

PAN, W.; WANG, S.; LIU, X.; et al.: KNTC1, regulated by HPV E7, inhibits cervical carcinogenesis partially through Smad2. Exp Cell Res, v. 423, p. 113458, 2023. DOI: https://doi.org/10.1016/j.yexcr.2023.113458

PAPPA, K. I.; KONTOSTATHI, G.; LYGIROU, V.; ZOIDAKIS, J.; ANAGNOU, N. P. Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review). Oncol Rep, v. 39, p. 1547–1554, 2018. DOI: https://doi.org/10.3892/or.2018.6257

PRABHAKAR, A. T.; JAMES, C. D.; FONTAN, C. T. et al. Human Papillomavirus 16 E2 Interaction with TopBP1 Is Required for E2 and Viral Genome Stability during the Viral Life Cycle. J Virol, v. 97, p. 1–19, 2023. DOI: https://doi.org/10.1128/jvi.00063-23

PRZYBYLSKI, M.; PRUSKI, D.; WSZOŁEK, K.; DE MEZER, M.; ŻURAWSKI, J.; JACH, R.; MILLERT-KALIŃSKA, S: Prevalence of HPV and Assessing Type-Specific HPV Testing in Cervical High-Grade Squamous Intraepithelial Lesions in Poland. Pathogens, v. 12, p. 1–10, 2023. DOI: https://doi.org/10.3390/pathogens12020350

RAMOS DA SILVA, J.; BITENCOURT RODRIGUES, K.; FORMOSO PELEGRIN, G.; et al. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med, v. 15, p. 1–18, 2023. DOI: https://doi.org/10.1126/scitranslmed.abn3464

ROMAN, A.; MUNGER, K. The papillomavirus E7 proteins. Virology, v. 445, p. 138–168, 2013. DOI: https://doi.org/10.1016/j.virol.2013.04.013

SCHIFFMAN, M.; DOORBAR, J.; WENTZENSEN, N. et al.: Carcinogenic human papillomavirus infection. Nat Rev Dis Prim, v. 2, p. 1–20, 2016. DOI: https://doi.org/10.1038/nrdp.2016.86

SCHILLER, J. T.; LOWY, D. R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol, v. 10, p. 681–692, 2012. DOI: https://doi.org/10.1038/nrmicro2872

SCHUCK, S.; STENLUND, A. A Conserved Regulatory Module at the C Terminus of the Papillomavirus E1 Helicase Domain Controls E1 Helicase Assembly. J Virol, v. 89, p. 1129–1142, 2015. DOI: https://doi.org/10.1128/jvi.01903-14

SONGOCK, W. K.; KIM, S.; BODILY, J. M. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res, v. 231, p. 56–75, 2017. DOI: https://doi.org/10.1016/j.virusres.2016.10.017

STUDSTILL, C. J.; MOODY, C.A. For Better or Worse: Modulation of the Host DNA Damage Response by Human Papillomavirus. Annu Rev Virol, v. 10, p. 325–345, 2023. DOI: https://doi.org/10.1146/annurev-virology-111821-103452

TAGUCHI, A.; NAGASAKA, K.; PLESSY, C., et al. Use of Cap Analysis Gene Expression to detect human papillomavirus promoter activity patterns at different disease stages. Sci Rep, v. 10, p. 1–10, 2020. DOI: https://doi.org/10.1038/s41598-020-75133-2

THATTE, J.; MASSIMI, P.; THOMAS, M.; BOON, S. S.; BANKS, L. The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. J Virol, v. 92, p. 1–14, 2018. DOI: https://doi.org/10.1128/jvi.00465-18

TOMITA, T.; HUIBREGTSE, J. M.; MATOUSCHEK, A. A masked initiation region in retinoblastoma protein regulates its proteasomal degradation. Nat Commun, v. 11, p. 1–8, 2020. DOI: https://doi.org/10.1038/s41467-020-16003-3

VAN DOORSLAER, K.; DESALLE, R.; EINSTEIN, M. H.; BURK, R. D. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche. PLoS Pathog, v. 11, p. 1–14, 2015. DOI: https://doi.org/10.1371/journal.ppat.1004980

VIVEROS-CARREÑO, D.; FERNANDES, A.; PAREJA, R: Updates on cervical cancer prevention. Int J Gynecol Cancer, v. 33, p. 394–402, 2023. DOI: https://doi.org/10.1136/ijgc-2022-003703

WALLACE, N. A.; GALLOWAY, D. A. Novel Functions of the Human Papillomavirus E6 Oncoproteins. Annu Rev Virol, v. 2, p. 403–423, 2015. DOI: https://doi.org/10.1146/annurev-virology-100114-055021

WANG, J.W.; RODEN, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, v. 445, p. 175–186, 2013. DOI: https://doi.org/10.1016/j.virol.2013.04.017

WANG, J.; et al. YY1 Positively Regulates Transcription by Targeting Promoters and Super-Enhancers through the BAF Complex in Embryonic Stem Cells. Stem Cell Reports, v. 10, n. 4, p. 1324-1339. DOI: https://doi.org/10.1016/j.stemcr.2018.02.004

WAROWICKA, A.; BRONIARCZYK, J.; WĘGLEWSKA, M.; KWAŚNIEWSKI, W.; GOŹDZICKA-JÓZEFIAK A. Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci, v. 23, n. 7, 3453. DOI: https://doi.org/10.3390/ijms23073453

WASSON, C. W.; MORGAN, E. L.; MÜLLER, M.; ROSS, R. L.; HARTLEY, M.; ROBERTS, S.; MACDONALD, A. Human papillomavirus type 18 E5 oncogene supports cell cycle progression and impairs epithelial differentiation by modulating growth factor receptor signalling during the virus life cycle. Oncotarget, v. 8, p. 103581–103600, 2017. DOI: https://doi.org/10.18632/oncotarget.21658

YAJID, A.I.; ZAKARIAH, M. A.; ZIN, A. A. M.; OTHMAN, N.H. Potential role of E4 protein in human papillomavirus screening: A review. Asian Pacific J Cancer Prev, v. 18, p. 315–319, 2017. DOI: https://doi.org/10.22034/APJCP.2017.18.2.315

ZHI, W.; WEI, Y.; LAZARE, C.; et al.: HPV-CCDC106 integration promotes cervical cancer progression by facilitating the high expression of CCDC106 after HPV E6 splicing. J Med Virol, v. 95, p. 1–11, 2023. DOI: https://doi.org/10.1002/jmv.28009

ZHU, H.; SHEN, Z.; LUO, H.; ZHANG, W.; ZHU, X: Chlamydia trachomatis infection-associated risk of cervical cancer: A meta-analysis. Med (United States), v. 95, p. 1–10, 2016. DOI: https://doi.org/10.1097/md.0000000000003077

Downloads

Publicado

2024-04-03

Edição

Seção

Articles