Global and regional physical processes in the surface of the Indian Ocean

Processos físicos globais e regionais na superfície do Oceano Índico

Autores

  • Oldemar Carvalho Junior Instituto Ekko Brasil

Palavras-chave:

Ocean-Atmosphere interaction, Emergy, Flow of energy, Ocean surface

Resumo

Different scale processes govern the interaction between the atmosphere and the Indian Ocean, responsible for the flow of energy and the circulation of matter. Global processes acting on the surface, provide energy derived from solar, geothermal, and tidal sources. These large-scale processes are responsible for the development of exergy gradients that can be turned into secondary sources of exergy, such as wind, rain, and ocean currents. The purpose of this study is to identify particular physical processes on the surface and how they are connected to external sources of energy. The external sources of energy are responsible for a hierarchical network, primarily constituted by the wind and ndff, and secondarily, Ekman pumping, temperature, and salinity, which initiate the surface currents. The strong connection between the atmosphere and the Indian Ocean is highlighted by this hierarchical energy network. The importance of the geobiosphere in transforming driving energies into secondary energy flows is demonstrated by this work.

Downloads

Não há dados estatísticos.

Referências

Abarbanel, H., & Young, W. R. (Orgs.). (2011). General Circulation of the Ocean (Softcover Reprint of the Original 1st 1987 ed. edição). Springer.

Archer, C. L., & Jacobson, M. Z. (2005). Evaluation of global wind power. Journal of Geophysical Research: Atmospheres, 110(D12). https://doi.org/10.1029/2004JD005462

Banse, K. (1984). Overview of the hydrography and associated biological phenomena in the Arabian Sea, off Pakistan. Marine geology and oceanography of Arabian Sea and coastal Pakistan, 271-303.

Brown, M. T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017

Brown, M. T., & Ulgiati, S. (2016). Emergy assessment of global renewable sources. Ecological Modelling, 339, 148–156. https://doi.org/10.1016/j.ecolmodel.2016.03.010

Carvalho Junior, O. de O. (2022). Role of Ocean-Atmosphere Interface in Annual and Semiannual SST Cycles in the Indian Ocean. Earth Sciences Research Journal, 26(3), Artigo 3. https://doi.org/10.15446/esrj.v26n3.101477

Dietrich, G. (1980). General Oceanography: An Introduction (2nd edition). John Wiley & Sons.

Florida State University. (2024). Florida Climate Center (https://climatecenter.fsu.edu/climate-data-access-tools/downloadable-data) [dataset]. https://climatecenter.fsu.edu/

Gautam, N., Simon, B., & Pandey, P. C. (1995). Study of Air-Sea interaction processes over the Arabian Sea and the Bay of Bengal Using Satellite Data. Journal of Climate, 8(12), 2947–2966. https://doi.org/10.1175/1520-0442(1995)008<2947:SOASIP>2.0.CO;2

Gill, A. E. (1982). Atmosphere-Ocean Dynamics. Academic Press.

Glazirin, G. E. (1997). Precipitation distribution with altitude. Theoretical and Applied Climatology, 58(3), 141–145. https://doi.org/10.1007/BF00865014

Harries, W. L., Llewellyn Jones, D. T., Minnett, P. J., Saunders, R. W., Zavody, A. M., Wadhams, P., Taylor, P. K., Houghton, J. T., Houghton, J. T., Cook, A. H., & Charnock, H. (1997). Observations of sea-surface temperature for climate research. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 309(1508), 381–395. https://doi.org/10.1098/rsta.1983.0049

Hastenrath, S. (1979). Climatic atlas of the Indian Ocean / Stefan Hastenrath, Peter J. Lamb. University of Wisconsin Press.

Levitus, S. (1983). Climatological Atlas of the World Ocean. Eos, Transactions American Geophysical Union, 64(49), 962–963. https://doi.org/10.1029/EO064i049p00962-02

Levitus, S., & Boyer, T. P. (1994). World Ocean Atlas 1994. Volume 4. Temperature (PB-95-270112/XAB; NESDIS-4). National Environmental Satellite, Data, and Information Service, Washington, DC (United States). https://www.osti.gov/biblio/137203

NOAA National Centers for Environmental Information. (2022). ETOPO 2022 15 Arc-Second Global Relief Model [dataset]. NOAA National Centers for Environmental Information. https://doi.org/10.25921/FD45-GT74

Oberhuber, J. M. (1988). An atlas based on the “Coads” data set: The budgets of heat, buoyancy and turbulent kinetic energy at the surface of global ocean. (015). Max-Planck-Institute für Meteorologie. https://hdl.handle.net/21.11116/0000-0001-2CD0-3

Odum, H. T. (2000). Folio #2—Emergy of Global Processes (Handbook of Emergy Evaluation) [Folio]. University of Florida.

Pernetta, J. (1995). Philip’s Atlas of the Oceans (New ed of 2 Revised ed edição). Philip’s.

Shetye, S. R., & Shenoi, S. S. C. (1988). Seasonal cycle of surface circulation in the coastal North Indian Ocean. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 97(1), 53–62. https://doi.org/10.1007/BF02861627

Shetye, S. R., Gouveia, A. D., & Shenoi, S. S. C. (1994). Circulation and water masses of the Arabian Sea. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 103(2), 107–123. https://doi.org/10.1007/BF02839532

Tilley, D. R. (1999). Emergy basis of forest systems [Tese de Doutorado, University of Florida]. https://www.proquest.com/openview/c5ae8ffa0b7315e6c375b3628a82305b/1?pq-origsite=gscholar&cbl=18750&diss=y

Tomczak, M., & Godfrey, J. S. (1994). Regional Oceanography: An Introduction. Pergamon.

You, Y. (1997). Seasonal variations of thermocline circulation and ventilation in the Indian Ocean. Journal of Geophysical Research: Oceans, 102(C5), 10391–10422. https://doi.org/10.1029/96JC03600

Wyrtki, K. (1973). Physical Oceanography of the Indian Ocean. Em B. Zeitzschel & S. A. Gerlach (Orgs.), The Biology of the Indian Ocean (p. 18–36). Springer. https://doi.org/10.1007/978-3-642-65468-8_3

Downloads

Publicado

2024-03-21

Edição

Seção

Articles