Qualitative identification of synthesized isoniazid derivatives by atemporal technique: UV-visible spectrophotometry
Identificação qualitativa de derivados sintetizados da isoniazida por uma técnica atemporal: espectrofotometria UV-visível
Palavras-chave:
Absorption bands, Chalcones, Hydrazide, N-acylhydrazone, SynthesisResumo
Ultramodern analytical techniques must also be hyphenated with cheaper and less complex techniques such as UV-visible spectrophotometry to confirm the formation of organic synthesis products. Here, the synthesis of 4 compounds (HC4ATIOF, HFEC, HCPA4NO2, and HICNM) from a clinically approved antitubercular drug, the Isoniazid, was preliminarily verified by UV-Vis spectrophotometry. Spectra recorded in the UV-Vis region for the four possible isoniazid derivatives allowed us to confirm the synthesis of just one acylhydrazone from isoniazid, the HICNM, since the absorption bands observed in the UV-Vis spectra of the reactants and the product obtained are completely different, indicating the formation of a new substance.
Downloads
Referências
AL-KHATTAF, F. S.; MANI, A.; HATAMLEH, A. A. et al. Antimicrobial and cytotoxic activities of isoniazid connected menthone derivatives and their investigation of clinical pathogens causing infectious disease. Journal of Infection and Public Health, v. 14, p. 533-542, 2021. https://doi.org/10.1016/j.jiph.2020.12.033
ARRUDA, I. E.; MACEDO, B. V. S.; MACEDO, J. C. et al. Preparação de hidrazona e N-acilidrazona usando fármacos comerciais como reagentes: aulas práticas de síntese de compostos bioativos. Química Nova, v. 43, p. 642-648, 2020. https://doi.org/10.21577/0100-4042.20170497
BEER, A.; BEER, P. Determination of the absorption of red light in colored liquids, Annalen der Physik und Chemist, v. 162, p. 78-88, 1852. https//doi.org/10.1002/andp.18521620505
CHAPMAN, J.; ORRELL, R.; KWOON, K. Y. et al. A high‐throughput and machine learning resistance monitoring system to determine the point of resistance for Escherichia coli with tetracycline: Combining UV‐visible spectrophotometry with principal component analysis. Biotechnology and Bioengineering, v.118, p. 1511-1519, 2021. https//doi.org/10.1002/bit.27664
CUKIERMAN, D. S.; EVANGELISTA, B. N.; NETO, C. C. et al. Mildness in preparative conditions directly affects the otherwise straightforward syntheses outcome of Schiff-base isoniazid derivatives: Aroylhydrazones and their solvolysis-related dihydrazones. Journal of Molecular Structure, v. 1228, p. 129437, 2021. https://doi.org/10.1016/j.molstruc.2020.129437
FIRMINO, G. S. S.; DE SOUZA, M. V. N.; PESSOA, C. et al. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. BioMetals, v. 29, p. 953-963, 2016. https://doi.org/10.1007/s10534-016-9968-7
GAUTAM, P.; PRAKASH, O.; DANI, R. K. et al. Spectra-structure correlation-based study of complex molecules of 1-isonicotinoyl-3-thiosemicarbazide with Ni2+, Mn2+ and Fe3+ using Raman, UV–visible and DFT techniques. Journal of Molecular Structure, v. 1127, p. 489-497. 2017. https://doi.org/10.1016/j.molstruc.2016.07.095
GUPTA, S.; PANDEY, S. K.; KUMAR, S. et al. Experimental, spectroscopic, and theoretical investigation on structural and anticancer activities of Schiff bases derived from isonicotinohydrazide. Journal of Molecular Structure, v. 1293, p. 136212, 2023. https://doi.org/10.1016/j.molstruc.2023.136212
KIVRAK, A.; YILMAZ, C.; KONUS, M. et al. Synthesis and biological properties of novel 1-methyl-2-(2-(prop-2-yn-1-yloxy)benzylidene) hydrazine analogues. Turkish Journal of Chemistry, v.42, n.2, p. 306-316, 2018. https://doi.org/10.3906/kim-1701-42
KUHLIN, J.; STURKENBOOM, M. G. G.; GHIMIRE, S. Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clinical Mass Spectrometry, v. 14, Part A, p. 34-45, 2019. https://doi.org/10.1016/j.clinms.2018.10.002
MOHANRAM, I.; MESHRAM, J. Design, synthesis, and evaluation of isoniazid derivatives acting as potent anti-inflammatory and anthelmintic agents via Betti reaction. Medicinal Chemistry Research, v. 23, p. 939, 2014. https://doi.org/10.1007/s00044-013-0693-2
OLIVEIRA, P. F. M.; GUIDETTI, B.; CHAMAYOU, A. et al. Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Molecules, v. 22, n. 9, p. 1457, 2017. https://doi.org/10.3390/molecules22091457
PATIL, P. S.; KASARE, S. L.; HAVAL, N. B. et al. Novel isoniazid embedded triazole derivatives: Synthesis, antitubercular and antimicrobial activity evaluation. Bioorganic & Medicinal Chemistry Letters, v. 30, p. 127434, 2020. https://doi.org/10.1016/j.bmcl.2020.127434
ROCHA, F. S.; GOMES, A. J.; LUNARDI, C. N. et al. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy UV-Vis. The Canadian Journal of Chemical Engineering, v. 96, p. 2512-2517, 2018. https://doi.org/10.1002/cjce.23344
SIDDIQUI, M. R.; ALOTHMAN, Z. A.; RAHAMAN, N. Analytical techniques in pharmaceutical analysis: A Review. Arabian Journal of Chemistry, v. 10, p. S1409-S1421, 2017. https://doi.org/10.1016/j.arabjc.2013.04.016
SORENSEN, T. J.; NIELSEN, M. F. Synthesis, UV/vis spectra and electrochemical characterization of arylthio and styryl substituted ferrocenes, Central European Journal of Chemistry, v. 9, p. 610-618, 2011. https//doi.org/10.2478/s11532-011-0040-8
SOYLAK, M.; OZDEMIR, B.; YILMAZ, E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-vis spectrophotometry. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, v. 243, 2020. https://doi.org/10.1016/j.saa.2020.118806
SYCHEV, A. V.; LAVROVA, A. I.; DOGONADZE, M. Z. et al. Establishing Compliance between Spectral, Colourimetric and Photometric Indicators in Resazurin Reduction Test. Bioengineering, v. 10, p. 962, 2023. https://doi.org/10.3390/bioengineering10080962
UPSTONE, S. L. Ultraviolet/Visible Light Absorption Spectrophotometry in Clinical ChemistrY. In: MEYERS, R. A. (ed.). Encyclopedia of Analytical Chemistry, p. 1699-1714, Chichester, UK: John Wiley & Sons Ltd., 2000. https://doi.org/10.1002/9780470027318.a0547.pub2
MHLW. The Japanese Pharmacopoeia – XVIII Edition. Ultraviolet-visible Reference Spectra. Tokyo, p. 2499, 2021. Acess at: February 2024. Available in: 000912393.pdf (mhlw.go.jp)
WOLFENDER, J.-L. HPLC in natural product analysis: the detection issue. Planta Medica, v. 75, p. 719-734, 2009. https//doi.org/10.1055/s-0028-1088393