Applying formal concept analysis to characterize infant mortality

Aplicando análise de formal de conceitos para a caracterização da mortalidade infantil

Autores

Palavras-chave:

Formal Concepts Analysis, Infant Mortality, Association Rules

Resumo

Infant mortality is characterized by the death of children under one year of age, a problem that affects a large part of the world’s population. In this context, we applied Formal Concept Analysis (FCA), a mathematical technique used in data analysis, to characterize infant mortality in two regions of the state of Minas Gerais: Belo Horizonte and Vale do Jequitinhonha. The aim is to describe infant mortality through data sets from the SIM and SINASC repositories. With FCA, concepts and rules that determine the main factors that contribute to infant mortality were extracted. Three scenarios were created for analysis. The first pointing out that weight, gestation, and APGAR are determinants for the child’s survival. In the second neonatal periods were used indicating that mortality, in the scenario where the child is born with low weight and early gestation, is higher than in the post-neonatal period. The third scenario was analyzed based on the International Classification of Diseases (ICD) indicating factors for mortality such as conditions and malformations in the post-neonatal period. The results reveal associations between different variables, allowing the profile of infant mortality to be traced in each region.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mark Alan Junho Song, Pontifícia Universidade Católica de Minas Gerais

Possui graduação (1991), mestrado (1996) e doutorado (2004) em Ciência da Computação pela Universidade Federal de Minas Gerais. É professor Adjunto IV da Pontifícia Universidade Católica de Minas Gerais e professor Titular do Centro Universitário UNA. Também é professor do Programa de Pós-graduação em Informática da PUC-Minas (PPGInf) desde sua implantação em 2005 onde coordena o Laboratório de Métodos Formais (LabMF). Tem experiência na área de Ciência da Computação, atuando nos seguintes temas: model checking, testes de programas, engenharia de software, análise formal de conceitos diádica (FCA) e triádica (TCA). Neste tema tem orientado alunos de mestrado e doutorado com publicações em conferências e periódicos que incluem parcerias de pesquisadores internacionais de renome na área. Já orientou 2 alunos de doutorado, foi orientador principal de 21 alunos de mestrado, além de ter sido coorientador de outros 3. Atuou também orientando 12 trabalhos de Iniciação Científica e 32 trabalhos de conclusão de curso.

Luis Enrique Zarate Galvez, Pontifícia Universidade Católica de Minas Gerais

Possui graduação em Engenharia Eletrônica pela Universidad Ricardo Palma (1987), Lima-Perú; graduação em Engenharia Elétrica pela Universidade Federal de Minas Gerais (2003) (reval. diploma); mestrado em Engenharia Elétrica (1991) e doutorado em Engenharia Metalúrgica e de Minas (1998) ambos pela Universidade Federal de Minas Gerais. Foi bolsista do Programa Pesquisador Mineiro da Fapemig e atualmente do CNPq nível 2. Sua principal área de interesse refere-se ao desenvolvimento e aplicação da área de Inteligência Computacional. Entre as principais linhas de pesquisa encontram-se: Soft-Computing (Redes Neurais Artificiais, Lógica Nebulosa e Computação Evolucionária), Aprendizado de Máquina, Descoberta de Conhecimento e Mineração de Dados, Análise Formal de Conceitos e Ontologia. É autor de 150 trabalhos completos publicados em periódicos e conferências tanto nacionais quanto internacionais. Coordenou e participou de 30 projetos de pesquisa com financiamento de órgãos oficiais de fomento (CNPq, FAPEMIG e FINEP) e da própria instituição onde atúa. Desde o início da sua participação no Mestrado de Informática da PUC Minas já orientou 15 dissertações de mestrado e 49 alunos de iniciação científica. Atualmente orienta 5 alunos de mestrado e 3 de doutorado. Foi coordenador do Programa de Informática da PUC Minas (2008-2010). Coordena o Laboratório de Inteligência Computacional Aplicada - LICAP onde o principal objetivo é o desenvolvimento de teorias e métodos para o desenvolvimento da área da computação e da aplicação em problemas reai.

Deivid Sardinha Santos, Pontifícia Universidade Católica de Minas Gerais

Mestre em Informática pela Pontifícia Universidade Católica de Minas Gerais (2023), possui licenciatura em Computação - Claretiano Centro Universitário (2019) e graduação em Sistemas de Informação pela Pontifícia Universidade Católica de Minas Gerais (2016) especialização em Engenharia de Software - Claretiano Centro Universitário (2021). Tem experiência na área de Ciência da Computação, com ênfase em Sistemas de Computaçã.

Referências

ANANIAS, K. H., et al. 2021. Triadic concept approximation. Information Sciences 572, 126–146. URL: https://www.sciencedirect.com/science/article/pii/S0020025521003935, doi: https://doi.org/10.1016/j.ins.2021.04.064.

BARBOSA, T. A. G. d. S. et al. Determinantes da mortalidade infantil em municípios do vale do jequitinhonha, minas gerais, brasil. Revista Mineira de Enfermagem, Revista Mineira de Enfermagem, v. 18, n. 4, p. 907–922, 2014. Disponível em: <http://hdl.handle.net/1843/BUOS-8SVPVU>.

BERNHARD, G.; RUDOLF, W. Formal concept analysis: mathematical foundations. Springer Science & Business Media, 2012.

BRAZIL. Mortalidade geral – 1996 a 2015 notas técnicas, 2017. Website: http://tabnet.datasus.gov.br/cgi/sim/Mortalidade_Geral_1996_2012.pdf.

BRASIL, M. da S. Estatísticas vitais. mortalidade. SciELO Brasil, 2022. Disponível em: <http://www2.datasus.gov.br/DATASUS/index.php?area=0205id=6937>.

FERREIRA, L. et al. Study of the evolution of antiemetic treatment through the application of triadic formal concept analysis. In: SBC. Anais do IX Symposium on Knowledge Discovery, Mining and Learning, 2021. p. 1–7. Disponível em: <https://doi.org/10.5753/kdmile.2021.17454>.

FONSECA, S. C. et al. Escolaridade e idade materna: desigualdades no óbito neonatal. Revista de Saúde Pública, SciELO Public Health, v. 51, p. 94, 2017. Disponível em: https://doi.org/10.11606/S1518-8787.2017051007013.

GAVA, C.; CARDOSO, A. M.; BASTA, P. C. Mortalidade infantil por cor ou raça em rondônia, amazônia brasileira. Revista de Saúde Pública, SciELO Brasil, v. 51, 2017. Disponível em: https://doi.org/10.1590/S1518-8787.2017051006411.

GAZZINELLI, A. et al. Mortalidade infantil evitável e vulnerabilidade social no vale do jequitinhonha, minas gerais, brasil. Revista Mineira de Enfermagem, Revista Mineira de Enfermagem, v. 23, p. 1–8, 2019. Disponível em: <https://doi.org/10.5935/1415-2762.20190094>.

IBGE. Tábua completa de mortalidade para o brasil, 2019. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/periodicos/3097/tcmb2019.pdf.

MAIA, L., et al. Individual and contextual determinants of infant mortality in brazilian state capitals: a multilevel approach. Cadernos de saúde publica, SciELO Brasil, v. 36, n. 2, 2020. Disponível em: <https://doi.org/10.1590/0102-311X00057519>.

MARZANO, L. et al. Applying formal concept analysis for the recognition of infant mortality patterns. Studies in Health Technology and Informatics. MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation. v. 290, p. 762 – 766, 2021. doi: 10.3233/SHTI220181.

MISSAOUI, R. et al. Computing triadic generators and association rules from triadic contexts. Annals of Mathematics and Artificial Intelligence, Springer, p.1–23, 2022.

NORONHA, M. et al. Characterization of long-lived and non-long lived profiles through biclustering. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020. p. 473–476. Disponível em: https://doi.org/10.1145/3341105.3374134.

OMS. Children: improving survival and well-being, 2020. Disponível em: https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality.

PRATI, R. C.; BATISTA, G.; MONARD, M. C. Uma experiência no balanceamento artificial de conjuntos de dados para aprendizado com classes desbalanceadas utilizando análise ROC. Proc. of the Workshop on Advances Trends in AI for Problem Solving, 2003.

PROCIANOY, R. S.; SILVEIRA, R. C. Os desafios no manejo da sepse neonatal. Jornal de Pediatria, SciELO Brasil, v. 96, p. 80–86, 2020. Disponível em: <https://doi.org/10.1016/j.jped.2019.10.004>.

SĂCĂREA, C. et al. Symptoms investigation by means of formal concept analysis for enhancing medical diagnoses. In: IEEE. 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2017. Disponível em: <https://doi.org/10.23919/SOFTCOM.2017.8115588>.

SYKES, G. et al. Do apgar scores indicate asphyxia? The Lancet, Elsevier, v. 319, n. 8270, p. 494–496, 1982. Disponível em: https://doi.org/10.1016/S0140-6736(82)91462-3.

SOARES, W. L. et al. Characterizing infant mortality using machine learning techniques: a case study in two brazilian states - Santa Catarina and Amapá, 2021. v. 7, n. 5, p. 45269–45290. Disponível em: <https://doi.org/10.3233/shti220183>

UNICEF. Neonatal mortality, 2020. Disponível em: https://data.unicef.org/topic/childsurvival/neonatal-mortality/.

ZÁRATE, L. et al. SciBR-M: A method to map the evolution of scientific interest - A case study in Educational Data Mining. Library Hi Tech, v. 1, p. 1-15, 2023.

Downloads

Publicado

2024-03-01

Edição

Seção

Articles