Sustainable innovation: decentralized hydroelectric power microgeneration in a rural Amazon community
Inovação sustentável: microgeração de energia hidrelétrica descentralizada em uma comunidade rural Amazônica
Palavras-chave:
Hydropower, Decentralized production, Rural areasResumo
Hydroelectric microgeneration is characterized by low environmental degradation and low production and transmission costs. In this sense, this work investigates the production and storage of electrical energy by gravitational accretion in a rural Amazonian community. Thus, the gutter was used to capture water in a river, directing the flow to a hydraulic ram which pumps the water to a 200-liter reservoir at a height of 3.35 meters. At the bottom of the reservoir was placed a 1/2” register, a hydraulic tube, a flow sensor (Arduino Platform) and a microgenerator (10W). After that, the record was opened for hydroelectric production, and the electrical voltage (Arduino Platform) was monitored by a voltage sensor connected to the poles of the microgenerator. From the results, about the calibration of the sensors, a scale factor was obtained for the voltage and flow sensor equal to 1.27 and 1.458, respectively. With the association of the microgenerators in series, it is possible to produce with 3 microgenerators a voltage of 22 volts at a flow of 2.45 L/min at a height of 3.35 meters. Regarding the adjustment of the system flow model, a speed reduction coefficient of 0.75 was obtained. By storing the energy in a 12 volts battery using 3 microgenerators in series it was possible to charge at a rate of 0.0071 volts per minute. Finally, the prototype has enough voltage to power devices such as batteries, in addition to producing clean, renewable energy from a decentralized source that is commonly wasted.
Downloads
Referências
AGÊNCIA NACIONAL DAS ÁGUAS - ANA. Conjuntura dos recursos hídricos no Brasil: informe 2020. Ed. Especial. Brasília, 2020. 100 p.
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (Brasil). Micro e minigeração distribuída: sistema de compensação de energia elétrica. Brasília. ANEEL, 2016. 34p.
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (Brasil). Resolução Normativa n° 687/2015. Disponível em: http://www2.aneel.gov.br/cedoc/ren2015687.pdf . Acesso em: 18 jun.2021.
AMRI, M.S. et al. Development of Residential Energy Harvesting System with Arduino Application. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), v. 11, n. 2, p. 55-58, 2019.
Associação Brasileira de Normas Técnicas. ABNT NBR ISO 9000:2015. Sistemas de gestão da qualidade – Fundamentos e vocabulário. Rio de Janeiro, 2015.
BAIAMONTE, G. Dimensionless stage-discharge relationship for a non-linear water reservoir: Theory and experiments. Hydrology, v. 7, n. 2, p. 23, 2020.
CALCA, M.V.C. et al. Uma perspectiva sobre o aproveitamento térmico e a conversão direta da energia solar em áreas rurais no Brasil. Research, Society and Development, v. 10, n. 6, 2021.
Como fazer o carneiro hidráulico. Revista Globo Rural. Disponível em < https://revistagloborural.globo.com/vida-na-fazenda/noticia/2015/05/como-fazer-o-
carneiro-hidraulico.html>. Acesso em 15 set. 2018.
HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física: Gravitação, Ondas e Termodinâmica.10.ed. vol 2. Rio de Janeiro: Editora LTC, 2016.
HONGYU, G. et al. Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine. Renewable Energy, v. 168, p. 21-30, 2021.
Internacional Energy Agency. Data and Projections, 2020. Disponível em: https://www.iea.org/reports/sdg7-data-and-projections. Acesso em: 18 jun.2021.
IBGE – Instituto Brasileiro de Geografia e Estatística. Sinopse do censo demográfico 2010. Disponível em: https://censo2010.ibge.gov.br/sinopse/. Acesso em 18 jun.2021.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Município de Barcarena, PA. 2010. Disponível em: . Acesso em: 18 julho. 2021.
LOBÃO, M. Amazônia rural brasileira: aspetos sociodemográficos. Revista de Geografia e Ordenamento do Território, v. 17, p. 123-150, 2020.
LOPES, M.S.; BRITO, D.M.C. Impactos socioambientais ocasionados por hidrelétrica no Vale do Jari, Amapá, Brasil: percepções comunitárias. Ambiente & Sociedade, v. 24, 2021.
MARANNI, A.C. et al. Exploring Torricelli's theorem with Arduino. Journal of Experimental Techniques and Instrumentation, v. 4, n. 04, p. 22-28, 2021.
AZEVEDO NETTO, José Martiniano de; FERNANDEZ, Miguel Fernández y. Manual de Hidráulica. 9ª ed. Editora Edgard Bluncher Ltda. 2015.
PATRICK, D.R.; FARDO, S.W. Electricity and electronics fundamentals. CRC Press, 2020.
PESSOA, E.B.; RABELO, J.A.A.; JIMENEZ, L.F.S.. Protótipo: Bracelete Detector de Obstáculos para Deficientes Visuais. Brazilian Journal of Development, v. 7, n. 3, p. 22872-22889, 2021.
RINA, Z. S. et al. Development of a microcontroller-based battery charge controller for an off-grid photovoltaic system. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017. p. 012138.
ROBERTS, A. et al. Generating renewable power from water hammer pressure surges. Renewable Energy, v. 134, p. 1392-1399, 2019
SILVA, Jonathan Velasco et al. Dificuldades brasileiras no setor de Energia elétrica nos anos de 2014 e 2015: Uma perspectiva da população de Guarus em Campos dos Goytacazes RJ. Brasiliana: Journal for Brazilian Studies, v. 5, n. 2, p. 248-268, 2017.
SILVA, J. F. A.; PEREIRA, R. G.. Panorama global da distribuição e uso de água doce. Revista Ibero Americana de Ciências Ambientais, v.10, n.3, p.263-280, 2019.
ROBERTS, J.J.et al. Robust multi-objective optimization of a renewable based hybrid power system. Applied Energy, v. 223, p. 52-68, 2018.
TIWARI, G. et al. Utility of CFD in the design and performance analysis of hydraulic turbines—A review. Energy Reports, v. 6, p. 2410-2429, 2020.
YAH, N. F.; OUMER, A. N. Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Suistanable Energy Reviews. 2017.