Biorational control of corn leafhopper and activation of resistance with compounds from Morinda citrifolia.

Controle biorracional de cigarrinha do milho e ativação de resistência com compostos de Morinda citrifolia.

Autores

Palavras-chave:

Alternative control, Dalbulus maidis, Noni, Octanoic acid, Phytoalexins

Resumo

Currently, the increasing productivity, garanee phytosanitary measures, and food security in plantations is a significant challenge. The potential of plant compounds in pests and diseases alternative control has been widely researched. This study is the first to investigate the use of the plant Morinda citrifolia L.(noni) for managing maize leafhoppers, a major issue in plantations. The effects of essential oil and octanoic acid on resistance induction were evaluated with quantification of phytoalexins, potential phytotoxicity, and toxicity to corn leafhopper, Dalbulus maidis. The chromatographic analysis identified octanoic acid as the primary compound, constituting 58.43% of the essential oil. The elicitor potential was more pronounced in plants treated with M. citrifolia compounds than in those treated with commercial resistance-activating products. The essential oil effectively controlled D. maidis, resulting in 50% mortality after 48 hours without damaging the leaf area. These findings highlight the potential of M. citrifolia in the biorational control of the stunting complex, with effective vector control and resistance induction.

Downloads

Não há dados estatísticos.

Referências

Abd-Elgawad, M.M. (2021). Optimizing Sampling and Extraction Methods for Plant-Parasitic and Entomopathogenic Nematodes. Plants, 10. https://doi.org/10.3390/plants10040629

Adams, R.P. (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. 4 th ed. Allured Publishing Corporation, Carol Stream: p. 804. 2007

Arellano, A.D.V., Guatimosim, E., Silva, G.M., Frank, A.K. & Dallagnol, L.J. (2021). Fungi causing leaf spot diseases in Lolium multiflorum in Brazil. Mycological Progress, 20,1175–1190. https://doi.org/10.1007/s11557-021-01727-3

Bonaldo, S.M., Schawan-Estrada, K.R.F., Stangarlin, J.R., Tessmann, D.J. & Scapim, C.A. (2004). Fungitoxicity, phytoalexins elicitor activity and protection of cucumber against Colletotrichum lagenarium, by Eucalyptus citriodora aqueous extract. Fitopatologia Brasileira, 29, 2. https://doi.org/10.1590/S0100-41582004000200002

Costa, R.V. Almeida, R.E.M., Cota, L.V., Silva, D.D., Lima, L.S., Sousa, C.W.A.A. & Souza, M.R. (2023) Corn stunt disease complex increases charcoal rot (Macrophomina phaseolina) under field conditions. Tropical plant pathology, 48, 283-292. https://doi.org/10.1007/s40858-023-00570-z

Ferreira, T.P.S., Veloso, R.A., Santos, G.R., Santos, L.P., Ferreira, T.P.S., Barros, A.M., Possel, R.D. &Aguiar, R.W.S. (2018). Enzymatic activity and elicitor of phytoalexins of Lippia sidoides Cham. and endophytic fungi. African Journal of Biotechnology, 17, 521-530. https://doi.org/10.5897/AJB2018.16402

Fu, J., Liu, Q., Wang, C., Liang, J., Liu, L. & Wang, Q. (2017). Zm WRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. Journal of Experimental Botany, 69, 497-510. https://doi.org/10.1093/jxb/erx436

Gerage, J.M., Meira, A.P.G. & Da Silva, M.V. (2017). Food and nutrition security: pesticide residues in food. Nutrire, 42(3). https://doi.org/10.1186/s41110-016-0028-4

Hamzat, O.T.H., Ganiyu, S.A., Obembe, O.M., Ajayi, A.M. & Owolade, O.F. (2022). Response of maize (Zea mays L.) cultivars to leaf blight and Curvularia leaf spot under application of Titanium dioxide in forest—savanna transition agro ecological zone Nigeria. Archives of Phytoathology and Plant Protection, 55, 913–925. https://doi.org/10.1080/03235408.2022.2074713

Harizia, A., Benguerai, A. & Boukhhari, Y.(2020). Toxicity and repellency of Eucalyptus globulus L. essential oil against Aphis fabae Scopoli, 1763 (Homoptera: Aphididae). Journal of Entomological Research, 44, 147-152. http://dx.doi.org/10.5958/0974-4576.2020.00027.4

Lagrouh, F., Dakka, N. & Bakri, Y. (2017). The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal of Medical Mycology, 27, 303-311. https://doi.org/10.1016/j.mycmed.2017.04.008

Lorenzetti, E., Stangarlin, J.R., Kuhn, O.J. & Portz, R.L. (2018). Indução de resistência à Macrophomina phaseolina em soja tratada com extrato de alecrim. Summa Phytopathologica, 44, 45-50. https://doi.org/10.1590/0100-5405/176895

Matiello, J. & Bonaldo, S.M. (2013). Eliciting activity of phytoalexins in Soybean and Sorghum by extracts and tinctures of medicinal species. Revista Brasileira de Plantas Medicinais, 15, 541-550. https://doi.org/10.1590/S1516-05722013000400010

Niu, Y, Han, S., Wu, Z., Pan, C., Wang, M., Tang, Y., Zhang, Q., Tan, G. & Han, B. A. (2022). push–pull strategy for controlling the tea green leafhopper (Empoasca flavescens F.) using semiochemicals from Tagetes erecta and Flemingia macrophylla. Pest Management Science, 78, 2161-2172. https://doi.org/10.1002/ps.6840

Nosé, N.P., Dalcin, M.S., Dias, B.L., Toloy, R.S., Mourao, D.S.C., Giongo, M.V., Cangussu, A.S.R., Araujo, S.H.C. & Santos, G.R. (2022). Noni essential oil associated with adjuvants in the production of phytoalexins and in the control of soybean anthracnosis. Journal of Medicinal Plants Research, 16, 1-10. https://doi.org/10.5897/JMPR2021.7154

Oliveira, C.M. & Frizzas, M.R. (2022). Eight Decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: What We Know and What We Need to Know. Neotropical Entomology, 51, 1–17. https://doi.org/10.1007/s13744-021-00932-9

Piaru, S.P., Mahmud, R., Majid, A.M.S.A., Ismail, S. & Man, C.N. (2011). Chemical composition, antioxodant and cytotoxicity activities of the essential oils of Myristica fragrans and Morinda citrifolia. Journal of the Science of Food and Agriculture, 92, 593-597. https://doi.org/10.1002/jsfa.4613

Pozebon, H., Stürmer, G.R. & Arnemann, J.A. (2022). Corn Stunt Pathosystem and Its Leafhopper Vector in Brazil. Journal of Economic Entomology, 115, 1817-1833. https://doi.org/10.1093/jee/toac147

Rafiee, H., Naghdi Badi, H., Mehrafarin, A, Qaderi, A., Zarinpanjeh, N., Sekara, A. & Zand, E. (2016). Application of plant biostimulants as new approach to improve the biological responses of medicinal plants- a critical review. Journal of Medicinal Plants, 15, 6-39. http://jmp.ir/article-1-1346-en.html

Raveau, R., Fontaine, J. & Lounès-Hadj Sahraoui, A. (2020). Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 9, 365. https://doi.org/10.3390/foods9030365

Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K. & Grace, S. (2020). The impact of pesticides on local waterways: A scoping review and method for identifying pesticides in local usage. Environmental Science & Policy, 106, 12–21. https://doi.org/10.1016/j.envsci.2019.12.005

Sabato, E.O., Landau, E.C., Barros, B.A. & Oliveira, C.M. (2020). Differential transmission of phytoplasma and spiroplasma to maize caused variation in the environmental temperature Brazil. European Journal of Plant Pathology, 157, 163-171. https://doi.org/10.1007/s10658-020-01997-9

Sarmento-Brum, R.B.C., Castro, H.G., Gama, F.R., Cardon, C.H. & Santos, G.R. (2014). Phytotoxicity of essential oils in watermelon, bean and rice plants. Journal of Biotechnology and Biodiversity, 5, 101-109. https://doi.org/10.20873/jbb.uft.cemaf.v5n2.brum

Schmelz, E.A., Kaplan, F., Huffaker A., Dafoe, N.J., Vaughan, M.M., Ni, X., Rocca, J.R., Alborn, H.T. & Teal, P.E. (2011). Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proceeding of National Academy Sciences of USA, 108, 5455–5460. https://doi.org/10.1073/pnas.1014714108

Toledo P.F.S., Ferreira T.P., Bastos I.M.A.S., Rezende, S.M., Jumbo, L.O.V., Didonet, J., Andrade, B.S., Melo, T.S., Smagghe, G. & Oliveira, E.E. (2019). Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles. Environmental Pollution, 255, 113153. https://doi.org/10.1016/j.envpol.2019.113153

Veloso, R.A., Ferreira, T.P.S., Dias, B.L., Mourão, D.S.C., Filho, R.N.A., Glória, R.S.L., Barros, A.M., Ferreira, T.P.S., Chaplla, V.M., Cangussu, A.S.R., Machado, S.C.S. & Santos, G.R. (2020). Chemical composition and bioactivity os essential oil from Morinda citrifolia L. fruit. Journal of Medicinal Plants Research, 14, 208-214. http://www.academicjournals.org/JMPR

Werrie, P-Y., Durenne, B., Delaplace, P. & Fauconnier, M-L. (2020). Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods, 9, 1291. https://doi.org/10.3390/foods9091291

Downloads

Publicado

2023-12-14

Edição

Seção

Articles