Modeling the geographic distribution of Mikania micrantha Kunth. to the Atlantic Forest of Bahia
Modelagem da distribuição geográfica de Mikania micrantha Kunth. para a Mata Atlântica da Bahia
Palavras-chave:
Environmental fairness, Biodiversity, MikaniaResumo
The Atlantic Forest is one of the world's hotspots, present in 17 Brazilian states, including Bahia. Modeling of the environmental suitability of Mikania micrantha Kunth in the state of Bahia was carried out. Occurrence data were obtained from the SpeciesLink and GBIF online databases. To create the models, five algorithms were used: Bioclim, Maxent, GAM, GLM and Random Forest. All models were evaluated by AUC and TSS metrics. It was possible to observe that Mikania micrantha has a better distribution in areas with high precipitation and tropical climate, with precipitation and temperature being the most important environmental variables for the species.
Downloads
Referências
ALLOUCHE, O.; TSOAR, A.; KADMON, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. Journal of Applied Ecology, [S. l.], v. 43, n. 6, p. 1223–1232, 2006. DOI: 10.1111/j.13652664.2006.01214.x. Disponível em: http://doi.wiley.com/10.1111/j.1365-2664.2006.01214.x. Acesso em: 23 abr. 2019.
ANDERBERG, A. A. et al.Compositae. IN: KUBITZKI, K., KADEREIT, J.W.; JEFFREY, C., (Eds) The families and genera of vascular plants. Springer Verlag, Berlin Heidelberg. p 61-576, 2007.
ANDERSON, R.P.; LEW, D. ; PETERSON, A.T. Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling v. 162, p. 211-232. 2003. https://doi.org/10.1016/S0304- 3800(02)00349-6
ARAUJO, M. B. et al. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, v. 10, n. 9, p. 1618-1626. 2004. https://doi.org/10.1111/j.1365- 2486.2004.00828.x
AUSTIN, M. P. Spatial prediction of species distribution: na interface between ecological theory and statistical modelling. Ecological modelling, v. 157, n. 2-3, p. 101-118. 2002. https://doi.org/10.1016/S0304-3800(02)00205-3
BARROSO, G. M. et al. Sistemática das angiospermas do Brasil. Viçosa: Universidade Federal de Viçosa, v.3, p. 237-309, 1991.
BREMER, K. Asteraceae: cladistics and classification. Portland: Timber Press, 1994.
BREIMAN, L. Random forests. Machine Learning, [S. l.], v. 45, n. 1, p. 5–32, 2001. DOI: 10.1023/A:1010933404324. Disponível em: http://link.springer.com/10.1023/A:1010933404324. Acesso em: 13 ago. 2022.
BISBY, F. A. The quiet revolution: biodiversity informatics and the internet. Science, v.289, n.5488, p. 2309–2312. 2000.
BUSBY, J.R. BIOCLIM – a bioclimate analysis and prediction system. In: Margules, R.; Austin, M.P. (eds.) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Canberra: CSIRO, p. 64–68. 1991.
FIELDING, Alan H.; BELL, John F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, [S. l.], v. 24, n. 1, p. 38–49, 1997. DOI: 10.1017/S0376892997000088. Disponivel em: https://www.cambridge.org/core/product/identifier/S0376892997000088/type/journal article. Acesso em: 25 maio. 2022
FERRIANI, A.P. et al. Influência da época do ano e das diferentes formas de aplicação de ácido naftaleno acético (ANA) no enraizamento de Mikania micranta Kunth. Rev. Bras. PI. Med., Botucatu, v.9, n.2, p.102-107. 2007.
FUNK, V. A; SUSANNA, A; STUESSY, T. F; ROBINSON, H. Classification of Compositae. In: FUNK, V. A; SUSANNA, A; STUESSY, T. F; BAYER, R. J. (Ed.) Systematics, Evolution and Biogeography of Compositae. Vienna: International Association for Plant Taxonomy, p.171–189, 2009b.
GUISAN, A. et al. Using niche-based models to improve the sampling of rare species. Conservation Biology n.20, p. 501-511. 2006. https://doi.org/10.1111/j.1523-1739.2006.00354.x
HASTIE, T.; TIBSHIRANI, R. Generalized Additive Models. Statistical Science, [S. l.], v. 1, n. 3, 1986. DOI: 10.1214/ss/1177013604. Disponível em: https://projecteuclid.org/journals/statistical science/volume-1/issue-3/Generalized-Additive-Models/10.1214/ss/1177013604.full. Acesso em: 13 ago. 2022.
HEIKKINEN, R. K. et al. BIOTIC interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography v.16, p. 754-763. 2007. https://doi.org/10.1111/j.1466- 8238.2007.00345.x
HIJMANS R. Raster: Geographic Data Analysis and Modeling. R package version 3.5-21, .2022.
HOLMES,W.C. A review preparatory to an infraspecific classification of Mikania (Tribe: Eupatorieae) In: Hind DJN, Jeffrey C.;Pope GV (eds.) Advances in Compositae systematics. Royal Botanical Gardens, Kew. p. 239-254. 1995
HORTAL, J. et al. Perspectives on the use of lakes and ponds as model systems formacroecological research. Journal of limnology, p. 46–60. 2014.
KING, R.; ROBISON, H. The genera of the Eupatorieae (Asteraceae), monographys in systematic botany, the Missouri Botanical Garden; king, rm; robinson, h., eds. Allen Press, Inc. 1987.
MARMION, Mathieu et al. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, [S. l.], v. 15, n. 1, p. 59–69, 2009. DOI: 10.1111/j.1472-4642.2008.00491.x. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.14724642.2008.00491.x. Acesso em: 25 maio. 2022.
MCCULLAGH, P.; NELDER, J. A. Generalized linear models. 1st ed ed. Boca Raton: Chapman; Hall/CRC, 1989.
NAIMI, B. et al. Where is positional uncertainty a problem for species distribution modelling? Ecography, [S. l.], v. 37, n. 2, p. 191–203, 2014. DOI: 10.1111/j.1600-0587.2013.00205.x. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.16000587.2013.00205.x. Acesso em: 13 ago. 2022.
NAIMI, B.; ARAÚJO, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, [S. l.], v. 39, n. 4, em: https://onlinelibrary.wiley.com/doi/10.1111/ecog.01881. Acesso em: 14 jul. 2021.
NAKAJIMA, J. N. A família Asteraceae no Parque Nacional da Serra da Canastra, Minas Gerais, Brasil. 467 f. Tese (Doutorado em Biologia Vegetal) - Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 2000.
PEARSON, R. G., RAXWORTHY, C. J., NAKAMURA, M.; TOWNSEND PETERSON, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, v.34, n.1, p. 102–117. 2007.
PHILLIPS, S.J; ANDERSON, R.P; SCHAPIRE, R.E. Maximum entropy modeling of species geographic distributions. ECOLOGICAL MODELLING. RADARWEG, NX AMSTERDAM, NETHERLANDSELSEVIER, 2006. DOI: 10.1016/j.ecolmodel.2005.03.026.
R CORE TEAM. R: A language and environment for statistical computing. Viena, Austria. R Foundation for Statistical Computing, Disponível em: https://www.R-project.org/.2022.
RITTER, M. et al. Mikania in lista de espécies da flora do Brasil. Jardim Botânico do Rio de janeiro. 2022.
RITTER, M. R.; WAECHTER, J. L. Biogeografia do gênero Mikania Willd (Asteraceae) no Rio Grande do Sul. Acta bot. bras., v.18, n.3, p.643-652, 2004.
RITTER MR; MIOTTO S. T. S Taxonomia de Mikania
Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Hoehnea v.32 p.309-359. 2005.
SOBERÓN, J.; PETERSON, A.T. Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics 2: 1-10. 2005. https://doi.org/10.17161/bi.v2i0.4
THUILLER W. et al. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.5.1, <https://CRAN.R-project.org/package=biomod2>.2021.
TABARELLI, M., MELO, M., LIRA, O. A Mata Atlântica do Nordeste. Mata Atlântica: uma rede pela floresta. RMA Brasilia, p. 1–17. 2006.
VENABLES, W. N.; RIPLEY, B. D. Modern Applied Statistics with S-PLUS. New York, NY: Springer New York, 1999. Disponí vel em: https://doi.org/10.1007/978-1-4757-3121-7. Acesso em: 13 ago. 2022.
WICKHAM H, FRANÇOIS R, HENRY L, MÜLLER K dplyr A Grammar of Data Manipulation. R package version 1.0.9, <https://CRAN.R-project.org/package=dplyr>. 2022.
WICKHAM H.; GIRLICH M. TIDYR: TIDY MESSY Data. R package version 1.2.0, .2022.
YEE, T. W.; MITCHELL, N.D. Generalized addtive models in plant ecology. Journal of Vegetation Science, [S. l.], v. 2, n. 5, p. 587–602, 1991. DOI: 10.2307/3236170. Disponível em: http://doi.wiley.com/10.2307/3236170. Acesso em: 13 ago. 2022.