Wind speed prediction model based on DWT and Randon Forest

Modelo para predição da velocidade do vento baseado em DWT e Randon Forest

Autores

Resumo

Wind energy is one of the fastest power generation technologies in the power generation industry and one of the most cost-effective methods of generating electrical power. For system reliability, improving highly appropriate wind speed forecasting methods is desirable. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. This technique helps forecast non-stationary time series. The objective is to evaluate the performance of the "DWT-Random Forest" model in predicting wind speed through a comparative analysis of performance metrics (MSE, RMSE, and MAPE) with similar studies. Our motivation is rooted in the pressing need to improve wind forecasting methods to optimize renewable energy generation. The method involved implementing the model, which presented performance metrics: MSE of 0.0099, RMSE of 0.0996, and MAPE of 0.0779. However, comparative analysis with previous studies reveals that our model demonstrates competitive performance. The main result of this study is the finding that the "DWT-Random Forest" model exhibits a respectable performance in predicting wind speed, although there is room for improvement.

Downloads

Não há dados estatísticos.

Biografia do Autor

Leandro Brito dos Santos, Universidade Federal do Recôncavo da bahia

Possui doutorado e mestrado em Modelagem Computacional e Tecnologia Industrial, especialização em Metodologias Ativas e TDICs na Educação, em Arquitetura de Software e Convergência de Mídias e graduação em Sistemas de Informação. Pesquisador cientista de dados da Rede Data Science BR (dsbr.org); fundador do Coruja Lab H4ck3r Space (Laboratório maker de impressão 3D, IoT, TA, robótica e smart cities). No âmbito da ciência e tecnologia da informação e inovação, trabalha com engenharia de software, data science, impressão 3D, tecnologias emergentes e sistemas complexos. Tem 14 anos de experiência como analista em projetos data center físico e cloud multiplataforma, segurança da informação no monitoramento e criação de políticas. desenvolvimento de projetos em Big Data, domótica e IoT, sistemas embarcados, banco de dados, Middleware Ginga, fabricação e montagem de impressora 3D e projetos de robótica educacional.

Roberto Luiz Souza Monteiro, Centro Universitário SENAI-CIMATEC

Roberto Luiz Souza Monteiro possui pós-doutorado em Modelagem Computacional e Tecnologia Industrial pelo Centro Universitário SENAI CIMATEC, doutorado em Difusão do Conhecimento pela Universidade Federal da Bahia, mestrado em Modelagem Computacional pela Fundação Visconde de Cairu, bacharelado em Sistemas de Informação, pela Universidade Estácio de Sá e licenciatura em Administração pela Universidade do Estado da Bahia. Atualmente é professor da Universidade do Estado da Bahia e do Centro Universitário SENAI CIMATEC. Tem experiência na área de Informática e Sociedade, com ênfase em Ciências Sociais Aplicadas, Ciência da Computação, com ênfase em Linguagem Formais e Autômatos e Modelagem Computacional com ênfase em Sistemas Complexos, atuando principalmente nos seguintes temas: projeto de compiladores, sistemas embarcados, análise de redes sociais e complexas e inteligência artificial.

Marcos Antônio Felipe Santos, Universidade do Estado da Bahia

Possui graduação em Engenharia de Materiais pela Universidade Federal da Paraíba-Campina Grande (1998). Especialização em Gestão Ambiental, Especialização em Gestão Integrada em Saneamento e Gestão Ambiental em Assentamentos Precários, Pós Graduação em Engenharia de Segurança do Trabalho. Atualmente realiza consultoria na área de Gestão de Resíduos e Meio Ambiente.

Maria Cristina Cunha de Oliveira Carvalho, Universidade do Estado da Bahia

Graduada em Licenciatura em Ciências com Habilitação em Biologia pela Universidade do Estado da Bahia (UNEB/1995), Possui especialização em Ciências Básicas da Saúde Aplicadas ao Ensino de Biologia do 2º grau Articulado ao Ensino de Química e Física (UFBA. /2004), em Tecnologias da Educação (PUC-Rio/2008). Tem experiência na área de Educação Básica na Rede privada (1993/2003) e pela Secretaria de Educação do Estado da Bahia (1998 / 2020.) Atualmente, é professora na Secretaria de Educação Municipal de Alagoinhas.

Referências

Ahmed, L. A., & Mohammed, M. (2023). A proposed wavelet and forecasting wind speed with the application. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 420–429.

Akhlagi, M., Ghafoorian, F., Mehrpooya, M., & Sharifi Rizi, M. (2022). Effective parameters optimization of a small-scale gorlov wind turbine, using cfd method. Iranian Journal of Chemistry and Chemical Engineering.

Bali, V., Kumar, A., & Gangwar, S. (2019). Deep learning based wind speed forecasting-a review. In 2019 9th international conference on cloud com- puting, data science & engineering (confluence) (pp. 426–431).

Berrezzek, F., Khelil, K., & Bouadjila, T. (2019). Efficient wind speed forecas- ting using discrete wavelet transform and artificial neural networks. Rev. d’Intelligence Artif., 33(6), 447–452.

Charakopoulos, A., Karakasidis, T., et al. (2019). Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis. Energy Policy, 133, 110934.

Fanel Dorel, S., Adrian Mihai, G., & Nicusor, D. (2021). Review of specific per- formance parameters of vertical wind turbine rotors based on the savonius type. Energies, 14(7), 1962.

Hanifi, S., Liu, X., Lin, Z., & Lotfian, S. (2020). A critical review of past, present and future wind power forecasting methods. Energies, 13(15), 3764.

Khelil, K., Berrezzek, F., & Bouadjila, T. (2021). Ga-based design of opti- mal discrete wavelet filters for efficient wind speed forecasting. Neural Computing and Applications, 33(9), 4373–4386.

KU, J., & Kovoor, B. C. (2021). A wavelet-based hybrid multi-step wind speed forecasting model using lstm and svr. Wind Engineering, 45(5), 1123– 1144.

Lipu, M. H., Miah, M. S., Hannan, M., Hussain, A., Sarker, M. R., Ayob, A., Mahmud, M. S. (2021). Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects. IEEE Access, 9, 102460–102489.

Liu, H., Wu, H., & Li, Y. (2020). Multi-step wind speed forecasting model based on wavelet matching analysis and hybrid optimization framework. Sustainable Energy Technologies and Assessments, 40, 100745Use font 12, no paragraph, justified text, single spacing, and space between each reference.

Mohammed, M. A., Ahmed, L. A., et al. (2023). Forecasting wind speed using the proposed wavelet neural network. Discrete Dynamics in Nature and Society, 2023.

Shi, L. (2019). Impacts of wind on solar chimney performance in a building. Energy, 185, 55–67.

Silva, M. V. M. d., Silveira, C. d. S., Silva, G. K. d., Pedrosa, W. H. d. V., Marcos Júnior, A. D., & Souza Filho, F. d. A. (2020). Projections of climate change in streamflow and affluent natural energy in the brazilian hydroelectric sector of cordex models. RBRH, 25.

Srivastava, T., Vedanshu, & Tripathi, M. (2020). Predictive analysis of rnn, gbm and lstm network for short-term wind power forecasting. Journal of Statistics and Management Systems, 23(1), 33–47.

Tiwari, S. (2022). Wind speed forecasting methods for wind energy generation. In 2022 1st international conference on informatics (ici) (pp. 143–147).

Zhang, W., Lin, Z., & Liu, X. (2022). Short-term offshore wind power forecasting-a hybrid model based on discrete wavelet transform (dwt), seasonal autoregressive integrated moving average (sarima), and deep- learning-based long short-term memory (lstm). Renewable Energy, 185, 611–628.

Downloads

Publicado

2023-11-29

Edição

Seção

Articles