Study to improve the operations of steel ingot reheating furnace using modeling tools

Estudo para melhorar as operações de forno de reaquecimento de lingotes de aço utilizando ferramentas de modelagem

Autores

Resumo

The present investigation obtained a system of mathematical models of operation of the steel ingot heating furnaces. For this, the systems analysis and synthesis methodology were used, from which the conceptual mathematical model was derived, as well as the interrelation of the furnace with the rest of the plant systems. The model was validated under static and dynamic operating conditions by purchasing the values of the variables measured in a Case Study facility with the values obtained by simulation. In addition, objective function optimization tools were applied by exploring a network of variables with a penalty for breach of constraints. The system responded satisfactorily to the disturbances inherent in the production process.

Downloads

Não há dados estatísticos.

Biografia do Autor

Yusdel Díaz Hernández, Universidade do Estado da Bahia

Yusdel Díaz Hernández was born in Havana, Cuba. in 1982. He received the B.S. and M.S. degrees in metallurgical and material engineering from the Technological University of Havana, in 2008 and 2012, the Ph.D. degree in engineering from University of Moa, in 2017. From 2008 to 2017, he was an Assistant Professor with the Technological University of Havana. His research interests include mathematical modeling, optimization, metallurgical and materials technology

Alberto Antonio Fiol Zulueta, Katangoji Polytechnic Institute, Angola

Alberto Antonio Fiol Zulueta was born in Matanzas, Cuba in 1958. He received the B.S. degree in mathematical from University of Havana in 1988, and M.S. degrees in optimization and aid decision from the Technological University of Havana, in 1999, the Ph.D. degree in engineering from Institute Katangoji, Luanda, Angola. His research interests include mathematical modeling, optimization, metallurgical and statistics.

Francisco de Jesús Mondelo García, University of Havana, Cuba

Francisco de Jesús Mondelo García born in Havana, Cuba in 1960 graduated from Metallurgical Engineering, specializing in smelting of ferrous and non-ferrous metals and alloys at the higher Polytechnic Institute of Azerbayshan-AZPI, where he also received the scientific degree of Master of Science (MSc) in Engineering Technical Sciences that year. Sufficient work experience (27 years) in production, technology, and management from 1984 to 2010 in metallurgical companies and ferrous and non-ferrous castings. In 2003 he graduated as a Diploma Specialist and in 2004 he received a 2nd Master's Degree in Technical Sciences at the Technological University of Havana-UTLH. Here he begins his vast teaching experience (21 years) in undergraduate, postgraduate, and industrial training as Assistant Professor from 1998 to today. His research interests include technological processes and the manufacture of parts in alloys and non-metals and includes polymeric composites or nanocomposites with particulate reinforcements in his doctoral thesis in development

Alexandre do Nascimento Silva, Universidade do Estado da Bahia

Alexandre do Nascimento Silva, natural de Recife/PE, nasceu em 01 de março de 1978. Concluiu o ensino superior em Administração na Faculdades Integradas Olga Mettig; recebeu o diploma de especialização e mestrado em Computação Científica pela Fundação Visconde de Cairu em 2003 e 2009 respectivamente. Também concluiu o curso superior de Engenharia de Produção na ÁREA1 em 2016. Ainda concluiu o doutorado em Modelagem Computaconal e Tecnologia Industrial no SENAI CIMATEC em 2017.

Marcos Batista Figueredo, Universidade do Estado da Bahia

Professor com formação básica em matemática e computação, com mais de 20 anos de experiência no ensino superior. Mestrado e doutorado em Modelagem Computacional e Tecnologia Industrial pela Universidade Federal da Bahia, com destaque em áreas de pesquisa como Modelagem Matemática, Visão Computacional, Reconhecimento de Padrões e Energias Renováveis. Minha paixão pela educação me levou a desenvolver atividades de ensino em disciplinas como matemática, computação e física, além de supervisionar projetos de Iniciação Científica, monitoria de ensino, TCC e atividades extracurriculares de pesquisa. Considerado sempre que é importante que os estudantes sejam capazes de aplicar o que aprendem na resolução de problemas da sua comunidade e, por isso, estimulamos a criatividade e a inovação. Como pesquisador, tenho trabalhado em projetos de grande relevância, incluindo o desenvolvimento de modelos matemáticos para análise de sistemas de energia renovável, o estudo de algoritmos de Visão Computacional para detecção de objetos em imagens e vídeos, e a criação de métodos de Reconhecimento de Padrões para identificação de problemas na indústria. Recentemente, me dedicado a pesquisas na área de Inteligência Artificial, com ênfase em Aprendizado de Máquina e Processamento de Linguagem Natural. Meu trabalho atual de pós-doutorado envolve a aplicação dessas técnicas para a criação de modelos de predição em de vazamentos de gás e desenvolvimento de uma plataforma de ensino mediado por tecnologia. Além das atividades de ensino e pesquisa, tenho tido o privilégio de coordenar o Mestrado Acadêmico em Modelagem e Simulação de Biossistemas na Universidade do Estado da Bahia, onde ajudo a desenvolver as habilidades de pesquisa e análise dos alunos e a incentivar a colaboração científica e o diálogo entre diferentes áreas de conhecimento.

Referências

Arreola, S., Solorio, G., & Hernández, V. (2015). Numerical simulation of a pusher-type furnace for oxide-forming billets. International Review of Science and Technology, 44(13), 30-37.

Benitez, I. O., Rivas, R., & Feliu, V. (2016). Fuzzy gain scheduled Smith predictor for temperature control in an industrial steel slab reheating furnace. IEEE Latin America Transactions, 14(11), 1325-1330.

Bieda, B., et al. (2014). Applying stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: Case study. Science of the Total Environment. Advanced online publication. https://doi.org/10.1016/j.scitotenv.2013.10.123

Cabrera, J., Palomino, E., & Ferreras, F. (2018). Cause assessment of fuel overconsuming in a steel reheating furnace for rolling. Engineering Mechanics, 21(1), 45-51.

Chakravarty, K. et al. (2020). Increase the energy efficiency of a steel billet reheating furnace by heat balance study and process improvement. Energy Reports. Advance online publication. https://doi.org/10.1016/j.egyr.2020.01.014

Diaz, Y. (2017). Modeling for the operation of radial continuous casting installations for square section steels (Unpublished doctoral dissertation). Department of Metallurgical Engineering, Moa Holguin University, Cuba.

Ghannam, B., et al. (2010). Experimental validation of the multiple absorption coefficient zonal method (MACZM) in a dynamic modeling of a steel reheating furnace. International Journal of Computational Methods, Advance online publication. https://doi.org/10.1080/10407782.2010.511989

Guo, W. J., Tiao, S., Hui, Z. J., Wei, M. S., Tao, R. W., & Jie, Z. Y. (2015). Data-driven thermal efficiency modeling and optimization for reheating furnace based on statistics analysis. In IEEE Proceedings of the International Conference on Chinese Control (pp. https://doi.org/10.1109/6120303049).

Guojun, L., Weijun, Z., & Haigeng, C. (2010). Three-dimensional zone method mathematical model on conventional reheating furnace. In IEEE Conference on Digital Manufacturing Automation and Automation (pp. https://doi.org/10.1109/ICDMA.2010.396).

Ilmer, Q., et al. (2019). Optimal synchronizations of the hot rolling stage in steel productions. IFAC-PapersOnLine. Advance online publication. https://doi.org/10.1016/j.ifacol.2019.11.431

Jang, J. H., Lee, D. E., Kim, C., & Kim, M. Y. (2008). Prediction of Furnace Heat Transfer and Its Influence on the Steel Slab Heating and Skid Mark Formation in a Reheating Furnace. ISIJ International, 48(10), 1325-1330.

Li, K., et al. (2018). Integrated Scheduling of Reheating Furnace and Hot Rolling Based on Improved Multiobjective Differential Evolution. Hindawi. Advance online publication. https://doi.org/10.1155/2018/1919438

Liang, H., Li, S., & Liu, M. (2009). Decision tree-based simulation research of specific reheating furnace modes. In Proceedings of the IEEE International Conference on Advanced Computer Control and Mechanical Automation (pp. 38). Beijing, China. https://doi.org/10.1109/ICACC.2009.38

Liao, Y., et al. (2010). Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace. IEEE Transactions on Industrial Electronics. Advance online publication. https://doi.org/10.1109/TIE.2009.2019753

Martínez, O., & Arzola, J. (2017). Exploration of Variable Codes Algorithm for Linings Materials and its Thickness Selection of Steel Casting Ladles. IEEE Latin America Transactions, 14(4), 115-117. https://doi.org/10.1109/LAT.2017.2656960

Myalapalli, J. K. (2015). Performance assessment of steel reheating furnace. In IEEE Conference on Systems and Applications (pp. https://doi.org/10.1109/XXXX.2015.XXXX)

Özgür, A., et al. (2020). A review of planning and scheduling methods for hot rolling mills in steel production. Computers & Industrial Engineering. Advance online publication. https://doi.org/10.1016/j.cie.2020.106606

Steinboeck, A., et al. (2011). Dynamic optimization of a slab reheating furnace with consistent approximation of control variables. IEEE Transactions on Control Systems Technology. Advance online publication. https://doi.org/10.1109/TCST.2010.2087379

Sujatha, K., et al. (2020). Precision manufacturing technology and measurements in the steel rolling industry using multi-threshold fast Fourier transform and backpropagation algorithm for the analysis of X-ray diffractometry. Materials Today. Advance online publication. https://doi.org/10.1016/j.matpr.2020.08.205

Tan, Y., et al. (2019). A hybrid MIP-CP approach to multistage scheduling problem in continuous casting and hot-rolling processes. IEEE Transactions on Automation Science and Engineering. Advance online publication. https://doi.org/10.1109/TASE.2019.2894093

Xu gang, S., & Chao, Y. (2009). Setpoint optimization for billet reheating furnace based on dynamic immune algorithm. In IEEE Conference on Electrical Control Engineering (pp. https://doi.org/10.1109/iCECE.2010.464).

Yang, Y., et al. (2019). A novel MDFA-MKECA method with application to industrial batch process monitoring. IEEE/CAA Journal of Automatica Sinica. Advance online publication. https://doi.org/10.1109/JAS.2019.1911555

Yongming, L., et al. (2010). Comparative study on special and non-special reheating furnace modes based on simulation technology. In IEEE Automation Research and Design (pp. 78-1-4799-0333-7/13/). https://doi.org/10.1109/78-1-4799-0333-7/13/

Zhao, Z., et al. (2020). Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling. Materials Science and Engineering. Advance online publication. https://doi.org/10.1016/j.msea.2020.139982

Zhi, Y., et al. (2019). Parallel numerical calculation on GPU for the 3-dimensional mathematical model in the walking beam reheating furnace. IEEE Access. Advance online publication. https://doi.org/10.1109/ACCESS.2019.2908522

Downloads

Publicado

2023-11-29

Edição

Seção

Articles