Irisin modulates bone marrow derived macrophage polarization towards M2 profile in high fat fed mice

Irisina modula a polarização de macrófagos derivados de medula óssea para perfil M2 em camundongos submetidos à dieta hiperlipídica

Autores

  • Juliana Magalhães-Santos
  • Rafael Loureiro Simões
  • Carla Ade Caldas
  • Silvio Rodrigues Marques-Neto
  • Thereza Christina Barja-Fidalgo
  • Eliete Bouskela
  • Raquel Carvalho Castiglione Universidade do Estado do Rio de Janeiro

Palavras-chave:

Obesity, Irisin, Macrophage

Resumo

Background and Aims: The chronic inflammatory process in the adipose tissue during obesity suggests constant polarization of classically activated macrophages (M1) and low polarization of alternately activated ones (M2). Since irisin has anti-inflammatory and antidiabetogenic properties our aim is to evaluate its effects on macrophage polarization in mice subjected to high fat diet. Methods and Results: C57Bl/6 mice were fed a high fat diet for 30 weeks. Bone marrow derived macrophages (BMDM) were isolated and incubated with 50 nM of irisin. Cellular phenotype, nitrite production, arginase-1 expression and cell viability were analyzed. Irisin was able to increase F480+CD206+ and F480+CD301+ cell number, and arginase1 expression. Irisin was not able to induce nitrite production and did not affect cell viability. Conclusion: Irisin was able to elicit an M2-like profile in macrophages in mice subjected to high fat diet, suggesting an anti-inflammatory action of this cytokine with potential therapeutic use in the control of imflammation during obesity.

Downloads

Não há dados estatísticos.

Referências

Arhire, L. I., Mihalache, L., & Covasa, M. (2019). Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, 10(August), 1–12. https://doi.org/10.3389/fendo.2019.00524

Bisgaard, L. S., Mogensen, C. K., Rosendahl, A., Cucak, H., Nielsen, L. B., Rasmussen, S. E., & Pedersen, T. X. (2016). Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - Implications for atherosclerosis research. Scientific Reports, 6(March), 1–10. https://doi.org/10.1038/srep35234

Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11(10), 889–896. https://doi.org/10.1038/ni.1937

Bobinski, F., Teixeira, J. M., Sluka, K. A., & Santos, A. R. S. (2018). Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain, 159(3), 437–450. https://doi.org/10.1097/j.pain.0000000000001109

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777

Castoldi, A., De Souza, C. N., Saraiva Câmara, N. O., & Moraes-Vieira, P. M. (2016). The macrophage switch in obesity development. Frontiers in Immunology, 6(JAN), 1–11. https://doi.org/10.3389/fimmu.2015.00637

De Heredia, F. P., Gómez-Martínez, S., & Marcos, A. (2012). Chronic and degenerative diseases: Obesity, inflammation and the immune system. Proceedings of the Nutrition Society, 71(2), 332–338. https://doi.org/10.1017/S0029665112000092

Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11(9), 607–610. https://doi.org/10.1038/nri3041

Han, Y., Liu, Y., Zhao, Z., Zhen, S., Chen, J., Ding, N., Ma, Y., & Wen, D. (2019). Does physical activity-based intervention improve systemic proinflammatory cytokine levels in overweight or obese children and adolescents? Insights from a meta-Analysis of randomized control trials. Obesity Facts, 12(6), 653–668. https://doi.org/10.1159/000501970

Huang, S. C. C., Smith, A. M., Everts, B., Colonna, M., Pearce, E. L., Schilling, J. D., & Pearce, E. J. (2016). Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity, 45(4), 817–830. https://doi.org/10.1016/j.immuni.2016.09.016

Kawanishi, N., Yano, H., Yokogawa, Y., & Suzuki, K. (2010). Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exercise Immunology Review, 16, 105–118.

Leung, A., Gregory, N. S., Allen, L.-A. H., & Sluka, K. A. (2016). Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice. PAIN, 157(1), 70–79. https://doi.org/10.1097/j.pain.0000000000000312

Liu, Y.-C., Zou, X.-B., Chai, Y.-F., & Yao, Y.-M. (2014). Macrophage Polarization in Inflammatory Diseases. International Journal of Biological Sciences, 10(5), 520–529. https://doi.org/10.7150/ijbs.8879

Maloney, J., Keselman, A., Li, E., & Singer, S. M. (2015). Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection. Microbes and Infection, 17(6), 462–467. https://doi.org/10.1016/j.micinf.2015.03.006

Mazur-Bialy, A. I. (2017). Irisin acts as a regulator of macrophages host defense. Life Sciences, 176, 21–25. https://doi.org/10.1016/j.lfs.2017.03.011

Mazur-Bialy, A. I., Kozlowska, K., Pochec, E., Bilski, J., & Brzozowski, T. (2018). Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 69(1), 117–125. https://doi.org/10.26402/jpp.2018.1.13

Moreno-Navarrete, J. M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., Ricart, W., & Fernández-Real, J. M. (2013). Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism, 98(4), E769–E778. https://doi.org/10.1210/jc.2012-2749

Müller, J., Von Bernstorff, W., Heidecke, C. D., & Schulze, T. (2017). Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. BioMed Research International, 2017, 9–11. https://doi.org/10.1155/2017/7584621

Murray, P. J., & Wynn, T. A. (2011). Obstacles and opportunities for understanding macrophage polarization. Journal of Leukocyte Biology, 89(4), 557–563. https://doi.org/10.1189/jlb.0710409

Niranjan, S. B., Belwalkar, S. V., Tambe, S., Venkataraman, K., & Mookhtiar, K. A. (2019). Recombinant irisin induces weight loss in high fat DIO mice through increase in energy consumption and thermogenesis. Biochemical and Biophysical Research Communications, 519(2), 422–429. https://doi.org/10.1016/j.bbrc.2019.08.112

Padgett, E. L., & Pruett, S. B. (1992). Evaluation of nitrite production by human monocyte-derived macrophages. Biochemical and Biophysical Research Communications, 186(2), 775–781. https://doi.org/10.1016/0006-291X(92)90813-Z

Phillips, C. M., Dillon, C. B., & Perry, I. J. (2017). Does replacing sedentary behaviour with light or moderate to vigorous physical activity modulate inflammatory status in adults? International Journal of Behavioral Nutrition and Physical Activity, 14(1), 1–12. https://doi.org/10.1186/s12966-017-0594-8

Pozzolini, M., Scarfì, S., Benatti, U., & Giovine, M. (2003). Interference in MTT cell viability assay in activated macrophage cell line. Analytical Biochemistry, 313(2), 338–341. https://doi.org/10.1016/S0003-2697(02)00631-0

Shao, L., Li, H., Chen, J., Song, H., Zhang, Y., Wu, F., Wang, W., Zhang, W., Wang, F., Li, H., & Tang, D. (2017). Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochemical and Biophysical Research Communications, 485(3), 598–605. https://doi.org/10.1016/j.bbrc.2016.12.084

Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & Hall, M. N. (2018). Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation, 1–13. https://doi.org/10.1172/JCI96139

Sica, A., & Mantovani, A. (2012). Plasticity and Polarization. Journal of Clinical Investigation, 122(3), 787–795. https://doi.org/10.1172/JCI59643DS1

Simões, R. L., Niconi-de-Almeida, Y., da-Fé, A. R., Barja-Fidalgo, C., & Fierro, I. M. (2010). A synthetic analog of 15-epi-lipoxin A4 inhibits human monocyte apoptosis: Involvement of ERK-2 and PI3-kinase. Prostaglandins and Other Lipid Mediators, 91(1–2), 10–17. https://doi.org/10.1016/j.prostaglandins.2009.12.001

Slate-Romano, J. J., Yano, N., & Zhao, T. C. (2022). “Irisin Reduces Inflammatory Signaling Pathways in Inflammation-Mediated Metabolic Syndrome “. Molecular and Cellular Endocrinology, 552, 111676. https://doi.org/10.1016/J.MCE.2022.111676

Spiegelman, B. M., & Flier, J. S. (2001). Obesity and the regulation of energy balance. Cell, 104(4), 531–543. https://doi.org/10.1016/S0092-8674(01)00240-9

Stein, B. M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 Potently Enhances Murine Macrophage Mannose Receptor Activity: A Marker of Alternative Immunologic Macrophage Activation By Michael Stein, Satish Keshav, Neil Harris,* and Siamon Gordon. J Exp Med, 176(July), 287–292.

Tu, Y., Liu, J., Kong, D., Guo, X., Li, J., Long, Z., Peng, J., Wang, Z., Wu, H., Liu, P., Liu, R., Yu, W., & Li, W. (2023). Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radical Biology and Medicine, 201, 98–110. https://doi.org/10.1016/J.FREERADBIOMED.2023.03.014

Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S., Neele, A. E., van den Berg, S. M., Luque-Martin, R., Chen, H. J., Boshuizen, M. C. S., Ahmed, M., Hoeksema, M. A., de Vos, A. F., & de Winther, M. P. J. (2016). Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Reports, 17(3), 684–696. https://doi.org/10.1016/j.celrep.2016.09.008

Vitali, A., Murano, I., Zingaretti, M. C., Frontini, A., Ricquier, D., & Cinti, S. (2012). The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. Journal of Lipid Research, 53(4), 619–629. https://doi.org/10.1194/jlr.M018846

Yang, Z., & Ming, X. F. (2014). Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Frontiers in Immunology, 5(OCT), 1–10. https://doi.org/10.3389/fimmu.2014.00533

Ye, W., Wang, J., Lin, D., & Ding, Z. (2020). The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. International Journal of Biological Macromolecules, 146, 25–35. https://doi.org/10.1016/j.ijbiomac.2019.12.028

Zhu, Y., Zhang, L., Lu, Q., Gao, Y., Cai, Y., Sui, A., Su, T., Shen, X., & Xie, B. (2017). Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy. International Journal of Molecular Medicine, 40(2), 281–292. https://doi.org/10.3892/ijmm.2017.3022

Downloads

Publicado

2023-11-27

Edição

Seção

Articles