Analysis of the economic and environmental sustainability of the municipality of Cáceres-Pantanal, MT, Brazil

Análise da sustentabilidade econômica e ambiental do município de Cáceres-Pantanal, MT, Brasil

Autores

  • Oldemar de Oliveira Carvalho Junior Instituto Ekko Brasil
  • Carolina Joana Silva
  • Solange Ikeda Castrillon
  • Mark Brown

Palavras-chave:

Emergy, Management, Public Policy, Environmental Compensation, Economic Assessment

Resumo

Cáceres plays a significant role in the Brazilian economy through animal production, boasting one of the country's largest concentrations of cattle. The economic sector uses environmental assets, a common property of society, using renewable and non-renewable resources. This affects the sustainability and competitiveness of the economic and environmental system. The analysis is done using systems ecology and emergy synthesis. First, a system diagram is constructed to organize the relationships between the ecological components. The second step consists of constructing the emergy synthesis calculation tables of the flows illustrated in the diagrams. Finally, emergy indices are calculated to summarize and relate the emergy flows of the economy with those of the environment. The findings indicate a minimal contribution from local energy sources, suggesting the necessity for greater recycling and integration in swine production. This work could be useful for the elaboration of public policies common to all municipalities that are part of the Pantanal region. Biodiversity, tourism, and the inclusion of protected areas in economic development planning can be important environmental assets for sustainability, social inclusion, and job creation.

Downloads

Não há dados estatísticos.

Referências

Abreu, U. G. P., Oliveira, L. O. F., & Balduino, S. (2021). Pecuária com certificação orgânica e sustentável no Pantanal de Mato Grosso do Sul (Comunicado Técnico 118). Embrapa.

Alho, C. J. R. (2008). Biodiversity of the Pantanal: Response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology, 68(4), 957–966. https://doi.org/10.1590/S1519-69842008000500005

Alho, C. J. R., Mamede, S. B., Benites, M., Andrade, B. S., & Sepúlveda, J. J. O. (2019). Threats to the biodiversity of the Brazilian Pantanal due to land use and occupation. Ambiente & Sociedade, 22, e01891. https://doi.org/10.1590/1809-4422asoc201701891vu2019L3AO

Almeida, C. M. V. B., Frugoli, A. D., Agostinho, F., Liu, G. Y., & Giannetti, B. F. (2020). Integrating or Des-integrating agribusiness systems: Outcomes of emergy evaluation. Science of the Total Environment, 720, 1–10.

ANA - Agência Nacional de Águas e Saneamento Básico. (n.d.). Agência Nacional de Águas e Saneamento Básico. Agência Nacional de Águas e Saneamento Básico (ANA). Retrieved December 19, 2021, from https://www.gov.br/ana/pt-br/agencia-nacional-de-aguas-e-saneamento-basico

Bergier, I., & Resende, E. K. (2010). Dinâmica de cheias no Pantanal do rio Paraguai de 1900 a 2009. Anais 3o Simpósio de Geotecnologias No Pantanal, 35–43. https://www.geopantanal.cnptia.embrapa.br/2010/cd/p147.pdf

Bolzan, F. P., Pereira, G. M. F., Tomas, W. M., Lourival, R., Sabino, J., Souza, F. L., Valente-Neto, F., Chiaravalloti, R. M., Garcia, L. C., Guerra, A., Nicola, R. D., da Silva Garcia, Á., Fernandes, J. F. A., Santos, C. C., Scur, M. C., Martins, P. I., Bernardino, C., & de Oliveira Roque, F. (2021). Monetary Value of the Ecosystem Services of the Pantanal and Its Surroundings: First Approximations and Perspectives. In G. A. Damasceno-Junior & A. Pott (Eds.), Flora and Vegetation of the Pantanal Wetland (pp. 767–783). Springer International Publishing. https://doi.org/10.1007/978-3-030-83375-6_21

Brown, M. T., & Ulgiati, S. (1997). Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecological Engineering, 9(1), 51–69. https://doi.org/10.1016/S0925-8574(97)00033-5

Brown, M. T., & Ulgiati, S. (2001). Emergy Measures of Carrying Capacity to Evaluate Economic Investments. Population and Environment, 22(5), 471–501. https://doi.org/10.1023/A:1010756704612

Brown, M. T., & Ulgiati, S. (2004). Emergy Analysis and Environmental Accounting. Encyclopedia of Energy, 2, 329–354. http://dx.doi.org/10.1016/B0-12-176480-X/00242-4

Burbridge, P. R. (1999). The Challenge of Demonstrating the Socio-economic Benefits of Integrated Coastal Management. In W. Salomons, R. K. Turner, L. D. de Lacerda, & S. Ramachandran (Eds.), Perspectives on Integrated Coastal Zone Management (pp. 35–53). Springer. https://doi.org/10.1007/978-3-642-60103-3_3

Burbridge, P., & Humphrey, S. (2003). Introduction to Special Issue on the European Demonstration Programme on Integrated Coastal Zone Management. Coastal Management, 31(2), 121–126. https://doi.org/10.1080/08920750390168336

Carvalho Junior, O. de O., Silva, Carolina, Pereira, W., Fonseca, V.C., & Birolo, Alesandra Bez. (2017). Environmental accounting of natural capital and ecosystem services for the Aquidauana River, Southern Pantanal, Brazil. Wulfenia, 24(9). http://www.multidisciplinarywulfenia.org/auto/index.php/pdf/stream/wufSKFL/1490908171

Carvalho Junior, O. de O., & Birolo, A. B. (2019). Conservation Tourism for the Sustainability of Coastal Areas. Case Study: Otter Project. Revista Costas, 1, 87–106. https://doi.org/10.26359/costas.0105

Carvalho Junior, O. de O., & Desai, M. (2021). Conservation tourism as a strategy to promote the conservation of biodiversity among BRICS countries. Revista Brasileira de Ecoturismo, 14(3), 351–367. https://doi.org/10.34024/rbecotur.2021.v14.11643

Carvalho Junior, O. de O., & Birolo, A. B. (2022). Economic and environmental sustainability of regional agribusiness in southern Brazil. Brazilian Journal of Development, 8(1), 5430–5447. https://doi.org/10.34117/bjdv8n1-366

Cavalett, O., Queiroz, J. F. de, & Ortega, E. (2006). Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecological Modelling, 193(3), 205–224. https://doi.org/10.1016/j.ecolmodel.2005.07.023

Eurich, J., Weirich Neto, P. H., & Rocha, C. H. (2013). Índices emergéticos de sustentabilidade da produção leiteira em uma propriedade de base familiar em Palmeira, Paraná, Brasil. Revista Ceres, 60, 332–338. https://doi.org/10.1590/S0034-737X2013000300005

Fagerholm, N., Torralba, M., Burgess, P. J., & Plieninger, T. (2016). A systematic map of ecosystem services assessments around European agroforestry. Ecological Indicators, 62, 47–65. https://doi.org/10.1016/j.ecolind.2015.11.016

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452

Fonseca, G. A. da, & Camoleze, J. M. C. (2019). Em busca da emancipação dos brasileiros à mesa: Diálogos entre Slow Food e MST. Revista Ingesta, 1(2), Article 2. https://doi.org/10.11606/issn.2596-3147.v1i2p105-106

Giannetti, B. F., Ogura, Y., Bonilla, S., & Almeida, C. (2011). Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price. Agricultural Systems - AGR SYST, 104, 679–688. https://doi.org/10.1016/j.agsy.2011.08.001

Golden, F. (2019). Década de 2020 traz novas tendências para viagens | Exame. Exame, 1223. https://exame.com/casual/decada-de-2020-traz-novas-tendencias-para-viagens/

Haden, A. C. (2002). Emergy Analysis of Food Production at S&S Homestead Farm. S&S Center for Sustainable Agriculture, 33. https://fdocuments.in/reader/full/emergy-analysis-of-food-production

Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016

IBGE. (2010). Índice de Gini da renda domiciliar per capita—Mato Grosso. Datasus. http://tabnet.datasus.gov.br/cgi/ibge/censo/cnv/ginimt.def

IBGE. (2019). Censo agropecuário. 2019. https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/series- temporais

IBGE. (2020). Pesquisa da Pecuária Municipal | IBGE. PPM - Pesquisa Da Pecuária Municipal. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=o-que-e

IBGE Cidades. (2022). IBGE | Cidades@ | Mato Grosso | Cáceres | Pesquisa | Frota de veículos | Veículo. IBGE. https://cidades.ibge.gov.br/brasil/mt/caceres/pesquisa/22/28120

INPE. (n.d.). Situação atual—Programa Queimadas—INPE. Queimadas. Retrieved January 22, 2022, from https://queimadas.dgi.inpe.br/queimadas/portal-static/situacao-atual/

Jung, C., Kim, C., Kim, S., & Suh, K. (2018). Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island. Sustainability, 10(5), Article 5. https://doi.org/10.3390/su10051681

Korres, N. E. (2013). The Application of Life Cycle Assessment on Agricultural Production Systems with Reference to Lignocellulosic Biogas and Bioethanol Production as Transport Fuels. In A. Singh, D. Pant, & S. I. Olsen (Eds.), Life Cycle Assessment of Renewable Energy Sources (pp. 37–78). Springer. https://doi.org/10.1007/978-1-4471-5364-1_3

Lagerberg, C., & Brown, M. T. (1999). Improving agricultural sustainability: The case of Swedish greenhouse tomatoes. Journal of Cleaner Production, 7(6), 421–434. https://doi.org/10.1016/S0959-6526(99)00230-9

LASA. (n.d.). LASA – LABORATÓRIO DE APLICAÇÕES DE SATÉLITES AMBIENTAIS – UFRJ. Laboratório de Aplicações de Satélite Ambientais - UFRJ. Retrieved January 22, 2022, from https://lasa.ufrj.br/

Lázaro, W. L., Oliveira-Júnior, E. S., Silva, C. J. da, Castrillon, S. K. I., & Muniz, C. C. (2020). Climate change reflected in one of the largest wetlands in the world: An overview of the Northern Pantanal water regime. Acta Limnologica Brasiliensia, 32, e104. https://doi.org/10.1590/S2179-975X7619

Lee, Y.-C., & Liu, Y.-F. (2023). Co-benefits of preserving urban farmland as climate change adaptation strategy: An emergy approach. Ecological Indicators, 154, 110722. https://doi.org/10.1016/j.ecolind.2023.110722

Marengo, J. A., Alves, L. M., & Torres, R. R. (2016). Regional climate change scenarios in the Brazilian Pantanal watershed. Climate Research, 68(2–3), 201–213. https://doi.org/10.3354/cr01324

Marengo, J. A., Camarinha, P. I., Alves, L. M., Diniz, F., & Betts, R. A. (2021). Extreme Rainfall and Hydro-Geo-Meteorological Disaster Risk in 1.5, 2.0, and 4.0°C Global Warming Scenarios: An Analysis for Brazil. Frontiers in Climate, 3. https://www.frontiersin.org/articles/10.3389/fclim.2021.610433

Martin, J. F., Diemont, S. A. W., Powell, E., Stanton, M., & Levy-Tacher, S. (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems & Environment, 115(1), 128–140. https://doi.org/10.1016/j.agee.2005.12.016

Ministério do Trabalho e Previdência. (2020). Ministério do Trabalho e Previdência. Ministério do Trabalho e Previdência. https://www.gov.br/trabalho-e-previdencia/pt-br/secretaria-do-trabalho

Netto, S. L., & Mateus, L. A. de F. (2009). Comparação entre a pesca profissional-artesanal e pesca amadora no pantanal de Cáceres, Mato Grosso, Brasil. Boletim do Instituto de Pesca, 35(3), Article 3. https://institutodepesca.org/index.php/bip/article/view/867

Noronha, I., & Fraga, L. S. (2020). DIMENSIONS OF CARE: EARTH AND AGRQECOLOGY FOR MST WOMEN FARMERS/DIMENSOES DO CUIDADO: TERRA E AGROECOLOGIA PARA AGRICULTORAS DO MST. Revista Artemis, 30(1), 466–488. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=18078214&v=2.1&it=r&id=GALE%7CA648409678&sid=googleScholar&linkaccess=abs

Observatório Pantanal. (2020, October 26). Quatro municípios do Pantanal estão entre os 10 com mais focos de incêndios do país em 2020. Observatorio Pantanal. https://observatoriopantanal.org/2020/10/26/quatro-municipios-do-pantanal-estao-entre-os-10-com-mais-focos-de-incendios-do-pais-em-2020/

Odum, H. T. (1996). Environmental Accounting: Emergy and Environmental Decision Making (Edição: 1a). Wiley.

Odum, E. P., & Barrett, G. W. (2004). Redesigning Industrial Agroecosystems. Journal of Crop Improvement, 11(1–2), 45–60. https://doi.org/10.1300/J411v11n01_03

Ortega, E., Anami, M., & Diniz, G. (2002). Certification of food products using emergy analysis. Proceedings of III International Workshop Advances in Energy Studies, 227–237.

Ortega, E., Cavalett, O., Bonifácio, R., & Watanabe, M. (2005). Brazilian Soybean Production: Emergy Analysis with an Expanded Scope. Bulletin of Science, Technology & Society, 25(4), 323–334. https://doi.org/10.1177/0270467605278367

Peterson, E. E., Cunningham, S. A., Thomas, M., Collings, S., Bonnett, G. D., & Harch, B. (2017). An assessment framework for measuring agroecosystem health. Ecological Indicators, 79, 265–275. https://doi.org/10.1016/j.ecolind.2017.04.002

Rosa, A. D. L., Siracusa, G., & Cavallaro, R. (2008). Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. Journal of Cleaner Production, 17(16), 1907–1914. https://doi.org/10.1016/j.jclepro.2008.01.003

Rosano-Peña, C., Teixeira, J. R., & Kimura, H. (2021). Eco-efficiency in Brazilian Amazonian agriculture: Opportunity costs of degradation and protection of the environment. Environmental Science and Pollution Research, 28(44), 62378–62389. https://doi.org/10.1007/s11356-021-14867-6

Santos, L. dos. (2013). Pluviosidade, impactos naturais, percepção humana e as inundações em Cáceres-MT – 1971 a 2010. [Dissertação de Mestrado, Universidade Federal de Mato Grosso]. http://ri.ufmt.br/handle/1/1256

Santos, L. dos, Zamparoni, C. A. G. P., & Soares, J. C. O. (2017). The rainfall variability in the Cáceres region-MT between 1971 to 2010. Revista Formação (ONLINE), 24(43), 147–168.

Shah, S., Liu, G., Yang, Q., Wang, X., Casazza, M., Agostinho, F., Lombardi, G., & Giannetti, B. F. (2019). Emergy-based valuation of agriculture ecosystem services and disservices. Journal of Cleaner Production, 239, 118019. https://doi.org/10.1016/j.jclepro.2019.118019

Silgueiro, V. de F., Souza, C. O. C. F. de, Muller, E. O., & Silva, C. J. da. (2021). Dimensions of the 2020 wildfire catastrophe in the Pantanal wetland: The case of the municipality of Poconé, Mato Grosso, Brazil. Research, Society and Development, 10(15), Article 15. https://doi.org/10.33448/rsd-v10i15.22619

Silva, C. J., Silva Sousa, K. N., Ikeda-Castrillon, S. K., Lopes, C. R. A. S., da Silva Nunes, J. R., Carniello, M. A., Mariotti, P. R., Lazaro, W. L., Morini, A., Zago, B. W., Façanha, C. L., Albernaz-Silveira, R., Loureiro, E., Viana, I. G., Oliveira, R. F. de, Alves da Cruz, W. J., de Arruda, J. C., Sander, N. L., de Freitas Junior, D. S., … Jongman, R. H. G. (2015). Biodiversity and its drivers and pressures of change in the wetlands of the Upper Paraguay–Guaporé Ecotone, Mato Grosso (Brazil). Land Use Policy, 47, 163–178. https://doi.org/10.1016/j.landusepol.2015.04.004

Silva, T. P. da, & O’Loiola, V. de. (2019). DINÂMICA TERRITORIAL NO MUNICÍPIO DE CÁCERES-MT: Conflitos na produção e uso do território. REVISTA EQUADOR, 8(3), 140–158. https://comunicata.ufpi.br/index.php/equador/article/view/9386

Spanholi, M., Young, C. E., & Videira, J. (2023). A importância do ICMS ecológico para os municípios de Mato Grosso. Novos Cadernos NAEA, 26. https://doi.org/10.18542/ncn.v26i2.12977

Spanholi, M., & Young, C. E. (2023). Contribution of Protected Areas to avoid deforestation in Mato Grosso, Brazil. FLORESTA, 53. https://doi.org/10.5380/rf.v53i4.87330

Sudré, S. G. S., Prolo, I., & Silva, C. J. da. (2018). Rede Social no Turismo do Pantanal Mato-Grossense: Comandantes de Barcos-Hotéis. Marketing & Tourism Review, 3(2), Article 2. https://doi.org/10.29149/mtr.v3i2.4346

Sudré, S., & da Silva, C. J. (2020). O turismo no Rio Paraguai no Pantanal de Mato Grosso. UNEMAT.

Taye, F. A., Folkersen, M. V., Fleming, C. M., Buckwell, A., Mackey, B., Diwakar, K. C., Le, D., Hasan, S., & Ange, C. S. (2021). The economic values of global forest ecosystem services: A meta-analysis. Ecological Economics, 189, 107145. https://doi.org/10.1016/j.ecolecon.2021.107145

Tilley, D. R., & Brown, M. T. (2006). Dynamic emergy accounting for assessing the environmental benefits of subtropical wetland stormwater management systems. Ecological Modelling, 192(3), 327–361. https://doi.org/10.1016/j.ecolmodel.2005.07.034

Ulgiati, S., & Brown, M. T. (1998). Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108, 23–36. https://doi.org/10.1016/S0304-3800(98)00016-7

Vassallo, P., Paoli, C., Tilley, D. R., & Fabiano, M. (2009). Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis. Journal of Environmental Management, 91(1), 277–289. https://doi.org/10.1016/j.jenvman.2009.08.017

Wantzen, K. M., Assine, M. L., Bortolotto, I. M., Calheiros, D. F., Campos, Z., Catella, A. C., Chiaravalotti, R. M., Collischonn, W., Couto, E. G., da Cunha, C. N., Damasceno-Junior, G. A., da Silva, C. J., Eberhard, A., Ebert, A., de Figueiredo, D. M., Friedlander, M., Garcia, L. C., Girard, P., Hamilton, S. K., … Urbanetz, C. (2023). The end of an entire biome? World’s largest wetland, the Pantanal, is menaced by the Hidrovia project which is uncertain to sustainably support large-scale navigation. Science of The Total Environment, 167751. https://doi.org/10.1016/j.scitotenv.2023.167751

Water Footprint Network. (n.d.). Water Footprint Network. Water Footprint Network. Retrieved December 19, 2021, from https://waterfootprint.org/en/

Downloads

Publicado

2023-11-14

Edição

Seção

Articles