Antioxidant potential of leaf extracts from Zingiber officinale Roscoe and Curcuma longa L.
Potencial antioxidante de extratos foliares de Zingiber officinale Roscoe e Curcuma longa L.
Palavras-chave:
Bio-waste, Circular economy, Medicinal plantsResumo
The rhizomes of the turmeric (Curcuma longa L.) and ginger (Zingiber officinale Roscoe) plant are commercialized for culinary and medicinal use, presenting antioxidant, anti-inflammatory and even antitumor activity. The leaves of these plants are considered post-harvest waste. The aim of this study was to evaluate the antioxidant potential of turmeric and ginger leaf extracts. After drying the leaves in an oven at 40ºC, cold extraction was performed by exhaustive maceration in methanol. The methanolic crude extract was partitioned in ascending order of polarity and the hexane, dichloromethane, ethyl acetate and hydromethanolic fractions were obtained. The antioxidant activity of the extracts and fractions was evaluated by the DPPH and ABTS methods and the results were expressed in μM of Trolox per g/extract. By the DPPH method, both in turmeric and ginger, the fraction that showed the highest antioxidant activity was ethyl acetate (752.18 and 393.32 μM Trolox/g, respectively). For ABTS, the highest antioxidant activity was in dichloromethane (935.54 and 704.31 μM Trolox/g, respectively), followed by ethyl acetate (393, 23 and 607.77 μM Trolox/g, respectively), indicating turmeric with higher antioxidant potential.
Downloads
Referências
ALSHERBINY, M. A. et al. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food and Chemical Toxicology, 104 p. 2018.
AN, K. et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry. 197, p. 1292-1300, 2016.
BARANKEVICZ, G. B. Poder antioxidante da cúrcuma (Curcuma longa L.) nos parâmetros neuroquímicos em ratos induzidos a depressão 54 f. Dissertação (Mestrado em Ciências) - Escola Superior de Agricultura “Luiz de Queiroz” ESALQ/USP Piracicaba. 2015.
BRAGA, M. C.; VIEIRA, E. C. S.; OLIVEIRA, T. F. de. Curcuma longa L. Leaves: Characterization (bioactive and antinutritional compounds) for use in Human Food in Brazil, Food Chemistry. 265, p. 308-315, 2018.
BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT — Food Science and Technology, 28 (1), p. 25-30, 1995.
BRATATI DE, B. et al. Profiling non-polar terpenes of rhizomes for distinguishing some Indian Curcuma species. Journal of Applied Research on Medicinal and Aromatic Plants, 13, 2019.
CHAN, E. W. C., LIM, Y. Y.; LIM, T.Y. Total Phenolic Content and Antioxidant Activity of Leaves and Rhizomes of Some Ginger Species in Peninsular Malaysia. The Gardens Bulletin Singapore, v. 59, p. 47-56, 2007.
DISSANAYAKE, K. G. C.; WALIWITA, A. L. C.; LIYANAGE, R. P. A review on medicinal uses of Zingiber officinale (Ginger). International Journal of Health Science Research, 6 (7), p.142–148, 2020.
DUGASANI, S. et al. Comparative antioxidant and antiinflammatory effects of [6]-gingerol, [8]-gingerol, [10]-ginge rol and [6]-shogaol. Journal of Ethnopharmacology, 127, p. 515–520, 2010.
EL-GHORAB, A. H. et al. Comparative Study on Chemical Composition and Antioxidant Activity of Ginger (Zingiber officinale) and Cumin (Cuminum cyminum). Journal of Agricultural and Food Chemistry, 58, p. 8231–8237, 2010.
HIRUN, S.; UTAMA-ANG, N.; ROACH, P. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying. Journal of Food Science and Technology. 51, (9), p. 2127-2133, 2014.
JARDIM, M. F. A. et al. Atividade antibacteriana e antioxidante dos extratos aquosos das folhas e dos rizomas de Zingiber officinale Roscoe cultivadas no horto medicinal da UNIPAR. Brazilian Journal of Development, Curitiba, v. 5, n. 10, p. 18292-18309, 2019.
JAYAN, H. et al. Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. Journal of Functional Foods. v. 57, p.417–424, 2019.
JIMENEZ-LOPEZ, C. et al. Agriculture wastes valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bio-economy. Food & Function, v. 11 (6), p. 4853-4877, 2020.
KIYAMA, R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. Journal of nutritional Biochemistry, 86:(5) 15 p. 2020.
NILE, S. H.; PARK, S. W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, p. 238–244, 2015.
OLIVEIRA, L. L. de.; CARVALHO, M. V. DE.; MELO, L. Health promoting and sensory properties of phenolic compounds in food. Revista Ceres, v. 61, p. 764-779, 2014.
PEREIRA, R. de C. A. Açafrão. In: PAULA JÚNIOR, T. J. de; VENZON, M. 101 culturas: manual de tecnologias agrícolas. Embrapa Agroindústria Tropical-INFOTECA-E, 2. ed. rev. atual. Belo Horizonte: EPAMIG - Empresa de Pesquisa Agropecuária de Minas Gerais, p. 51-53, 2019.
PRIYADARSINI, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. v. 19, n. 12, p. 20091-20112, 2014.
RICARDO, L. L. et al. Phytochemical investigation and phytotoxic activity of aerial parts of oilseed radish (Raphanus sativus var. oleifer Stokes). Biochemical Systematics and Ecology, v. 78, p. 52-58, 2018.
RUFINO, M. S. M. et al. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTSº+. Embrapa Agroindústria Tropical. Comunicado Técnico, 128, p. 1-4, 2007.
SEARLE, T. et al. The top 10 cosmeceuticals for facial hyperpigmentation. Dermatologic Therapy, p. 1–12, 2020.
SHAHIDI, F.; AMBIGAIPALAN, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods. p. 820–897, 2015.
SHIRAHIGUE, L. D.; CECCATO-ANTONINI, S. R. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciência Rural, v.50, n.4, 17p, 2020.
SIMITZIS, P. E. Agro-industrial by-products and their bioactive compounds-An ally against oxidative stress and skin aging. Cosmetics. 5(4), p. 1–16, 2018.
SUETH-SANTIAGO, V. et al. Curcumina, o pó dourado do açafrão-da-terra: introspecções sobre química e atividades biológicas. Química Nova, v. 38, n. 4, 538-552, 2015.
TAIZ, L. et al. Fisiologia Vegetal. 6. ed. Porto Alegre: Editora Artmed, 2017.
TAMFU, A. N. et al. phenolic profiles, antibiofilm, anti-quorum sensing and enzyme inhibitory potentials of Camellia sinensis (L.) O. Kuntze and Curcuma longa L. Food Science and Technology, v. 133, 2020.
TANWEER, S. et al. Comparison and HPLC quantification of antioxidant profiling of ginger rhizome, leaves and flower extracts. Clinical Phytoscience. 6, 12 p., 2020.
TIVERON, A. P. Atividade antioxidante e composição fenólica de legumes e verduras consumidos no Brasil. 102 f. Dissertação (Mestrado em Ciências) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba. 2010.
WEETMAN, C. Economia circular: conceitos e estratégias para fazer negócios de forma mais inteligente, sustentável e lucrativa. Tradução: Afonso Celso da Cunha Serra. 1. ed. São Paulo: Autêntica Business, 517p. 2019.
YEH, H. et al. Bioactive components analysis of two various gingers (Zingiber offcinale Roscoe) and antioxidant effect of ginger extracts. LWT- Food Science and Technology. 55, p. 329–334, 2014.
ZAREI, M.; ACHARYA, P.; TALAHALLI, R. R. Ginger and turmeric lipid-solubles attenuate heated oil-induced hepatic inflammation via the downregulation of NF-kB in rats, Life Sciences. 36, p.1-14, 2020.