COVID-19: what do we know so far?
COVID-19: o que sabemos até agora?
Palavras-chave:
COVID-19, Review, Signs and SymptomsResumo
The COVID-19 pandemic spread quickly and intensely worldwide, having a major impact on morbidity and mortality rates in different regions. Today, we know that the main mechanism of infection is related to the binding of the Spike structure protein of SARS-CoV-2 with the Angiotensin Converting Enzyme 2 receptors. These receptors are present, in greater quantities, in the respiratory tract, and, therefore, most symptoms are a consequence of the impact on this system. However, Angiotensin-Converting Enzyme 2 receptors are present in all cells in our body, and, therefore, SARS-CoV-2 infection can affect different organs. We present a brief review of what we know, to date, about COVID-19 and its main characteristics.
Downloads
Referências
ACOSTA, R. A. H. et al. COVID-19 Pathogenesis and Clinical Manifestations. Infect Dis Clin North Am, v. 36, n. 2, p. 231-249, 2022. https://doi.org/10.1016%2Fj.idc.2022.01.003
AMORIM DOS SANTOS, J. et al. Oral Manifestations in Patients with COVID-19: A 6-Month Update. Journal of Dental Research, v. 100, n. 12, p.1321–1329, 2021. https://doi.org/10.1177/00220345211029637
BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Departamento de Imunização e Doenças Imunopreveníveis. Guia de vigilância genômica do SARS-CoV-2: uma abordagem epidemiológica e laboratorial [recurso eletrônico] / Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Departamento de Imunização e Doenças Imunopreveníveis. – Brasília: Ministério da Saúde, 2023. Disponível em: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/comunicacao/guia-de-vigilancia-genomica-do-sars-cov-2-uma-abordagem-epidemiologica-e-laboratorial/@@download/file Acesso em: 10 de set de 2023.
BUNYAVANICH, S.; DO, A.; VICENCIO, A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA, v.323, p. 2427–2429, 2020. https://doi.org/10.1001/jama.2020.8707
CARABELLI, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol, v. 21, n. 3, p. 162-177, 2023. https://doi.org/10.1038/s41579-022-00841-7
CENTERS FOR DISEASE CONTROL AND PREVENTION. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with Coronavirus Disease 2019 (COVID-19). Available at: https://emergency.cdc.gov/han/2020/han00432.asp
CHENG, L. et al. A review of current effective COVID-19 testing methods and quality control. Arch Microbiol, v. 205, n. 6, p. 239, 2023. https://doi.org/10.1007%2Fs00203-023-03579-9
DIOGUARDI, M. et al. Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2 Infection. Pediatr Rep, v. 13, n. 3, p. 363-382, 2021. https://doi.org/10.3390/pediatric13030045
DONG, T. et al. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci, v. 14, n. 23, p. 6149-6206, 2023. https://doi.org/10.1039%2Fd2sc06665c
DUAN, S. M. et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci, v. 16, n. 3, p. 246-255, 2003. https://www.besjournal.com/en/article/id/d73449fd-b491-4458-9738-f1297a7f1040
FAYYAD, D. et al. COVID-19: A A Systematic Review of the Transmissibility, Pathogenesis, Entry Factors, and Signature Immune Response. BioChem, v. 2, n. 2, p. 115-144, 2022. https://doi.org/10.3390/biochem2020009
FELDSTEIN, L. R. et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med, v. 383, n. 4, p. 334-346, 2020. https://doi.org/10.1056/NEJMoa2021680
GAO, Y. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol, v. 92, n. 7, p. 791-796, 2020. https://doi.org/10.1002/jmv.25770
GOSTIN, L. O.; GRONVALL, G. K. The Origins of Covid-19 - Why It Matters (and Why It Doesn't). New England Journal Medicine, v. 388, n. 25, p. 2305-2308, 2023. https://doi.org/10.1056/NEJMp2305081
GUERRA, E. N. S. et al. Saliva is suitable for SARS-CoV-2 antibodies detection after vaccination: a rapid systematic review. Frontiers in Immunology, v. 13, p. 1-14, 2022. https://doi.org/10.3389%2Ffimmu.2022.1006040
GUPTA, A. et al. Extrapulmonary manifestations of COVID-19. Nat Med, v. 26, n. 7, p. 1017-1032, 2020. https://doi.org/10.1038/s41591-020-0968-3
HOLMES, E. C. et al. The origins of SARS-CoV-2: A critical review. Cell, v. 184, n. 19, p. 4848-4856, 2021. https://doi.org/10.1016/j.cell.2021.08.017
HUANG, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med, v. 27, n. 5, p. 892–903, 2021. https://doi.org/10.1038/s41591-021-01296-8
HSIEH, W. Y. et al. Development and Efficacy of Lateral Flow Point-of-Care Testing Devices for Rapid and Mass COVID-19 Diagnosis by the Detections of SARS-CoV-2 Antigen and Anti-SARS-CoV-2 Antibodies. Diagnostics (Basel), v. 11, n. 10, p. 1760, 2021. https://doi.org/10.3390/diagnostics11101760
HU, B. et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, v. 19, n. 3, p. 141-154, 2021. https://doi.org/10.1038/s41579-020-00459-7
HU, Q.; HE, L.; ZHANG, Y. Community Transmission via Indirect Media-To-Person Route: A Missing Link in the Rapid Spread of COVID-19. Front Public Health. v. 9, p. 687937, 2021. https://doi.org/10.3389%2Ffpubh.2021.687937
HUANG, Y. et al. SARS-CoV-2 Viral Load in Clinical Samples from Critically Ill Patients. Am J Respir Crit Care Med, v. 201, n. 11, p. 1435-1438, 2020. https://doi.org/10.1164/rccm.202003-0572le
HUNG, I. F. et al. Viral loads in clinical specimens and SARS manifestations. Hong Kong Med J, v. 15, n. 9, p. 20-22, 2009. https://doi.org/10.3201%2Feid1009.040058
JOHNSON, B. A. et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog, v. 18, n. 6, p. e1010627, 2022. https://doi.org/10.1101/2021.10.14.464390
KARAGIANNIDIS, C. et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med, v. 8, n. 9, p. 853-862, 2020. https://doi.org/10.1016/S2213-2600(20)30316-7
KARAGIANNIDIS, C. et al. Major differences in ICU admissions during the first and second COVID-19 wave in Germany. Lancet Respir Med, v. 9, n. 5, p. e47-e48, 2021. https://doi.org/10.1016/s2213-2600(21)00101-6
KESHEH, M. M. et al. An overview on the seven pathogenic human coronaviruses. Rev Med Virol, v. 32, n. 2, p. e2282, 2022. https://doi.org/10.1002/rmv.2282
KIM, J. M. et al. Detection and Isolation of SARS-CoV-2 in Serum, Urine, and Stool Specimens of COVID-19 Patients from the Republic of Korea. Osong Public Health Res Perspect, v. 11, n. 3, p. 112-117, 2020. https://doi.org/10.24171/j.phrp.2020.11.3.02
KIRTIPAL, N.; BHARADWAJ, S.; KANG, S.G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol, v. 85, p. 104502, 2020. https://doi.org/10.1016/j.meegid.2020.104502
LAMERS, M. M.; HAAGMANS, B. L. SARS-CoV-2 pathogenesis. Nature reviews microbiology, v. 20, n. 5, p. 270-284, 2022. https://doi.org/10.1038/s41579-022-00713-0
LOOI, M. K. How are covid-19 symptoms changing? BMJ, v. 18, n. 380, p. 3, 2023. https://doi.org/10.1136/bmj.p3
LUDVIGSSON, J. F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020 Jun;109(6):1088-95. https://doi.org/10.1111/apa.15270
MAHAJAN, S. et al. SARS-CoV-2 Infection Hospitalization Rate and Infection Fatality Rate Among the Non-Congregate Population in Connecticut. Am J Med, v. 134, n. 6, p. 812-816, 2021. https://doi.org/10.1016%2Fj.amjmed.2021.01.020
MAIA, R. et al. Diagnosis Methods for COVID-19: A Systematic Review. Micromachines (Basel), v. 13, n. 8, p. 1349, 2022. https://doi.org/10.3390%2Fmi13081349
MARZOLI, F. et al. A systematic review of human coronaviruses survival on environmental surfaces. Sci Total Environ, v. 778, p. 146191, 2021. https://doi.org/10.1016%2Fj.scitotenv.2021.146191
MEISTER, T. et al. Clinical characteristics and risk factors for COVID-19 infection and disease severity: A nationwide observational study in Estonia. PLoS One, v. 17, n. 6, p. e0270192, 2022. https://doi.org/10.1371/journal.pone.0270192
MOHAN, B. S.; NAMBIAR, V. COVID-19: an insight into SARS-CoV-2 pandemic originated at Wuhan City in Hubei Province of China. J Infect Dis Epidemiol, v. 6m, n. 4, p. 146, 2020. https://doi.org/10.23937/2474-3658/1510146
NIKOLOPOULOU, G. B.; MALTEZOU, H. C. COVID-19 in Children: Where do we Stand? Arch Med Res, v. 53, n. 1, p.1-8, 2022. https://doi.org/10.1016/j.arcmed.2021.07.002
OCHANI, R. et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med, v. 29, n. 1, p. 20-36, 2021. https://www.infezmed.it/media/journal/Vol_29_1_2021_3.pdf
OLEARO, F. et al. Handling and accuracy of four rapid antigen tests for the diagnosis of SARS-CoV-2 compared to RT-qPCR. J Clin Virol, v. 137, p. 104782, 2021. https://doi.org/10.1016%2Fj.jcv.2021.104782
PATEL, J. M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr Allergy Asthma Rep, v. 22, n. 5, p. 53-60, 2022. https://doi.org/10.1007/s11882-022-01031-4
PETERSEN, E. et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis, v. 20, n. 9, p. e238-e244, 2020. https://doi.org/10.1016/s1473-3099(20)30484-9
PLATTO, S. et al. History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochem Biophys Res Commun, v. 538, p. 14-23, 2021. https://doi.org/10.1016%2Fj.bbrc.2020.10.087
POLATOĞLU, I. et al. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm (2020), v. 4, n. 2, p. e228, 2023. https://doi.org/10.1002%2Fmco2.228
PRADHAN, M. et al. COVID-19: clinical presentation and detection methods. J Immunoassay Immunochem, v. 43, n. 1, p. 1951291, 2022. https://doi.org/10.1080/15321819.2021.1951291
SHORT, K. R.; COWLING, B. J. Assessing the potential for fomite transmission of SARS-CoV-2. Lancet Microbe, v. 4, n. 6, p. e380-e381, 2023. https://doi.org/10.1016/S2666-5247(23)00099-X
SINGH, D.; YI, S. V. On the origin and evolution of SARS-CoV-2. Exp Mol Med, v. 53, n. 4, p. 537-547, 2021. https://doi.org/10.1038/s12276-021-00604-z
SINGH, M. K. et al. A meta-analysis of comorbidities in COVID-19: which diseases increase the susceptibility of SARS-CoV-2 infection? Comput Biol Med. v. 130, p. 104219, 2021. https://doi.org/10.1016%2Fj.compbiomed.2021.104219
SYED, A. M. et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science, v. 374, n. 6575, p. 1626-1632, 2021. https://doi.org/10.1126/science.abl6184
TALI, S. H. S. et al. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev, v. 34, n. 3, p. e00228, 2021. https://doi.org/10.1128/cmr.00228-20
TANG, A. et al. Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerg Infect Dis, v. 26, n. 6, p. 1337-1339, 2020. https://doi.org/10.3201%2Feid2606.200301
V’KOVSKI, P. et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, v. 19, n. 3, p. 155-170, 2021. https://doi.org/10.1038/s41579-020-00468-6
VAN DOORN, A. S. et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther, v. 52, n. 8, p. 1276-1288, 2020. https://doi.org/10.1111/apt.16036
VAN DOREMALEN, N. et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med, v. 382, n. 16, p. 1564-1567, 2020. https://doi.org/10.1056/nejmc2004973
VÁZQUEZ, J. B. et al. Manifestaciones sistémicas y extrapulmonares en la COVID-19. Medicine (Madr), v. 13, n. 55, p. 3235-3245, 2022. https://doi.org/10.1016%2Fj.med.2022.05.004
WIERSINGA, W. J. et al. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA, v. 324, n. 8, p. 782-793, 2020. https://doi.org/10.1001/jama.2020.12839
WORLD HEALTH ORGANIZATION. Coronavirus disease (COVID-19) pandemic. 2022. Disponível em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
WORLD HEALTH ORGANIZATION. WHO Coronavirus (COVID-19) Dashboard. 2023. Disponível em: https://covid19.who.int/
WU, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe, v. 29, n. 12, p. 1788-1801, 2021. https://doi.org/10.1016/j.chom.2021.11.005
WU, Y. et al. Prolonged presence of SARS-CoV-2 viral RNA in fecal samples. Lancet Gastroenterol Hepatol, v.5, n. 5, p. 434-435, 2020. https://doi.org/10.1016/s2468-1253(20)30083-2
ZAHORNACKY, O. et al. Multisystem Inflammatory Syndrome in Adults Associated with Recent Infection with COVID-19. Diagnostics (Basel), v. 13, n. 5, p. 983, 2023. https://doi.org/10.3390%2Fdiagnostics13050983
ZHANG, H. P.; SUN, Y. L. et al. Recent developments in the immunopathology of COVID-19. Allergy, v. 78, n. 2, p. 369-388, 2023. https://doi.org/10.1111/all.15593
ZHANG, J. J.; DONG, X. et al. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol, v. 64, n. 1, p. 90-107, 2023. https://doi.org/10.1007/s12016-022-08921-5
ZHANG, J.; WANG, S.; XUE, Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol, v. 92, n. 6, p. 680-682, 2020. https://doi.org/10.1002/jmv.25742
ZHANG, X. et al. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology, v. 365, n. 2, p. 324-335, 2007. https://doi.org/10.1016%2Fj.virol.2007.04.009
ZHOU, L. et al. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect Dis, v. 21, n. 1, p. 496, 2021. https://doi.org/10.1186/s12879-021-06222-4