Current evidences of therapeutic effects of sulforaphane on oral and intestinal microbiota in Autism Spectrum Disorder – ASD

Evidências atuais dos efeitos terapêuticos do sulforafano na microbiota oral e intestinal no Transtorno do Espectro Autista – TEA

Autores

  • Melissa Damasceno UCDB Universidade Católica Dom Bosco
  • Luciane Fernandes
  • Letícia Silva
  • Lucas Damasceno
  • Alinne Castro

Resumo

Growing evidence suggests that the Sulforaphane promising agent against oxidative stress related to Autism Spectrum Disorder (ASD), can reduce signs and symptoms like impaired communication and socialization, stereotyped behaviour and neurodevelopmental abnormalities. The oral and intestinal microbiota is extremely important, when out of balance, is one of the main causes of various desordens in the human organism. Broccoli is one of the functional foods most investigated by science. It contains Sulforaphane, an isothiocyanate with great antioxidant and anti-inflammatory capacity; with studies focusing on neurodegenerative and neurodevelopmental diseases. The bibliographic survey was carried out on the Pubmed platform, between 2013 and 2023, in informations provided for Ministério da Saúde – Brasil and in nutrition books.  This is a systematic review on Sulforaphane supplementation for people with ASD and its implications for controlling the symptoms that most affect this population, opens a new avenue for managing autistic patients through non-pharmacological intervention.

Downloads

Não há dados estatísticos.

Referências

ABDULL, Razis A.F.; BAGATTA, M.; DE NICOLA, G.R.; IORI, R.; IOANNIDES, C. Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology. 2010 Nov 9;277(1-3):74-85. doi: 10.1016/j.tox.2010.08.080. Epub 2010 Sep 15. PMID: 20833222. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0300483X10004130?via%3Dihub. Acesso em: 02 de março de 2023.

AISHWORIYA, R.; VALICA, T.; HAGERMAN, R.; RESTREPO, B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics. 2022 Jan;19(1):248-262. doi: 10.1007/s13311-022-01183-1. Epub 2022 Jan 14. PMID: 35029811; PMCID: PMC9130393. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130393/. Acesso em: 08 de maio de 2023.

ARNOSO, BERNARNO; COSTA, GISELLE; SCHMIDT, BETINA. Biodisponibilidade e Classificação de Compostos Fenólicos. v. 18 n. 1 (2019): Nutrição Brasil Disponível em: https://convergenceseditorial.com.br/index.php/nutricaobrasil/article/view/1432/4971. Acesso em: 08 de maio de 2023.

Biblioteca Virtual em Saúde – Ministério da Saúde, 2009. (Fonte: Universidade Federal de Santa Catarina. Alimentos Funcionais. Jornal Eletrônico n° 5, jun. 2008). Disponível em: https://bvsms.saude.gov.br/alimento-funcionais/. Acesso em: 07 de maio de 2023.

BERDASCO, M.; ESTELLER, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010 Nov 16;19(5):698-711. doi: 10.1016/j.devcel.2010.10.005. PMID: 21074720. Disponível em: https://www.cell.com/developmental-cell/fulltext/S1534-5807(10)00458-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1534580710004582%3Fshowall%3Dtrue. Acesso em: 09 de setembro de 2023.

BROSE, R.D.; SHIN, G.; MCGUINNESS, M.C.; SCHNEIDEREITH, T.; PURVIS, S.; DONG, G.X.; KEEFER, J.; SPENCER, F.; SMITH, K.D. Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet. 2012 Oct 1;21(19):4237-52. doi: 10.1093/hmg/dds247. Epub 2012 Jul 2. PMID: 22752410; PMCID: PMC3441123. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441123/. Acesso em: 08 de maio de 2023.

BRUNO, Luciano; CASTRO, Rita – Chás & Shots. Nutrição, Saúde e Alimentação Saudável. Pages 64 – 78, Ed. Arte Ensaio, 2021. ISBN 978-65-87141-10-7, Rio de Janeiro – RJ.

CHARTOUMPEKIS, D.V.; ZIROS, P.G.; CHEN, J.G.; GROOPMAN, J.D.; KENSLER, T.W.; SYKIOTIS, G.P. Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial. Food Chem Toxicol. 2019 Apr;126:1-6. doi: 10.1016/j.fct.2019.02.004. Epub 2019 Feb 5. PMID: 30735751; PMCID: PMC6422739. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0278691519300547?via%3Dihub. Acesso em: 11 de setembro de 2023.

CHAUHAN, A.; CHAUHAN, V. Oxidative stress in autism. Pathophysiology. 2006 Aug;13(3):171-81. doi: 10.1016/j.pathophys.2006.05.007. Epub 2006 Jun 12. PMID: 16766163. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0928468006000538?via%3Dihub. Acesso em: 11 de setembro de 2023.

CHU, M.; SELTZER, T.F. Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 2010 May 20;362(20):1945-6. doi: 10.1056/NEJMc0911005. PMID: 20484407.

Disponível em: https://www.nejm.org/doi/10.1056/NEJMc0911005?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200www.ncbi.nlm.nih.gov. Acesso em: 12 de setembro de 2023.

DIETERT, R.R.; DIETERT, J.M.; DEWITT, J.C. Environmental risk factors for autism. Emerg Health Threats J. 2011 Apr 20;4:7111. doi: 10.3402/ehtj.v4i0.7111. PMID: 24149029; PMCID: PMC3168222. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168222/. Acesso em: 09 de maio de 2023.

EGNER, P.A.; CHEN, J.G.; ZARTH, A.T.; NG, D.K.; WANG, J.B.; KENSLER, K.H.; JACOBSON, L.P.; MUÑOZ, A.; JOHNSON, J.L.; GROOPMAN, J.D.; FAHEY, J.W.; TALALAY, P.; ZHU, J.; CHEN, T.Y.; QIAN, G.S.; CARMELLA, S.G.; HECHT, S.S.; KENSLER, T.W. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila). 2014 Aug;7(8):813-823. doi: 10.1158/1940-6207.CAPR-14-0103. Epub 2014 Jun 9. PMID: 24913818; PMCID: PMC4125483. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125483/. Acesso em: 10 de setembro de 2023.

FRYE, R.E.; ROSSIGNOL, D.A. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr. 2014 Jun 27;2:66. doi: 10.3389/fped.2014.00066. PMID: 25019065; PMCID: PMC4073259. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073259/. Acesso em: 10 de setembro de 2023.

HALKIER, B.A.; GERSHENZON, J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 2006;57:303-33. doi: 10.1146/annurev.arplant.57.032905.105228. PMID: 16669764. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16669764/. Acesso em: 10 de setembro de 2023.

HOLST, B.; WILLIAMSON, G. A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep. 2004 Jun;21(3):425-47. doi: 10.1039/b204039p. Epub 2004 May 12. PMID: 15162227. Disponível em: https://pubmed.ncbi.nlm.nih.gov/15162227/. Acesso em: 10 de setembro de 2023.

JAMES, S.J.; CUTLER, P.; MELNYK, S.; JERNIGAN, S.; JANAK, L.; GAYLOR, D.W.; NEUBRANDER, J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004 Dec;80(6):1611-7. doi: 10.1093/ajcn/80.6.1611. PMID: 15585776. Disponível em: https://www.sciencedirect.com/science/article/pii/S0002916522037480?via%3Dihub. Acesso em: 10 de setembro de 2023.

KANG, D.W.; ADAMS, J.B.; GREGORY, A.C.; BORODY, T.; CHITTICK, L.; FASANO, A.; KHORUTS, A.; GEIS, E.; MALDONADO, J.; MCDONOUGH-MEANS, S.; POLLARD, E.L.; ROUX, S.; SADOWSKY, M.J.; LIPSON, K.S.; SULLIVAN, M.B.; CAPORASO, J.G.; KRAJMALNIK-BROWN, R. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017 Jan 23;5(1):10. doi: 10.1186/s40168-016-0225-7. PMID: 28122648; PMCID: PMC5264285. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264285/. Acesso em: 10 de setembro de 2023.

KELLY, R.S.; BOULIN, A.; LARANJO, N.; LEE-SARWAR, K.; CHU, S.H.; YADAMA, A.P.; CAREY, V.; LITONJUA, A.A.; LASKY-SU, J.; WEISS, S.T. Metabolomics and Communication Skills Development in Children; Evidence from the Ages and Stages Questionnaire. Metabolites. 2019 Mar 5;9(3):42. doi: 10.3390/metabo9030042. PMID: 30841573; PMCID: PMC6468693. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468693/ Acesso em: 10 de setembro de 2023.

KENSLER, T.W.; EGNER, P.A.; AGYEMAN, A.S.; VISVANATHAN, K.; GROOPMAN, J.D.; CHEN, J.G.; CHEN, T.Y.; FAHEY, J.W.; TALALAY, P. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem. 2013;329:163-77. doi: 10.1007/128_2012_339. PMID: 22752583; PMCID: PMC3553557. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553557/. Acesso em: 10 de setembro de 2023.

KLOMPARENS, E.A.; DING, Y. The neuroprotective mechanisms and effects of sulforaphane. Brain Circ. 2019 Apr-Jun;5(2):74-83. doi: 10.4103/bc.bc_7_19. Epub 2019 Jun 27. PMID: 31334360; PMCID: PMC6611193. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611193/. Acesso em: 10 de setembro de 2023.

LI, N.; YANG, J.; ZHANG, J.; LIANG, C.; WANG, Y.; CHEN, B.; ZHAO, C.; WANG, J.; ZHANG, G.; ZHAO, D.; LIU, Y.; ZHANG, L.; YANG, J.; LI, G.; GAI, Z.; ZHANG, L.; ZHAO, G. Correlation of Gut Microbiome Between ASD Children and Mothers and Potential Biomarkers for Risk Assessment. Genomics Proteomics Bioinformatics. 2019 Feb;17(1):26-38. doi: 10.1016/j.gpb.2019.01.002. Epub 2019 Apr 23. PMID: 31026579; PMCID: PMC6520911. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520911/#b0100 Acesso em: 26 de fevereiro de 2023.

LIKHITWEERAWONG, N.; THONUSIN, C.; BOONCHOODUANG, N.; LOUTHRENOO, O.; NOOKAEW, I.; CHATTIPAKORN, N.; CHATTIPAKORN, S.C. Profiles of urine and blood metabolomics in autism spectrum disorders. Metab Brain Dis. 2021 Oct;36(7):1641-1671. doi: 10.1007/s11011-021-00788-3. Epub 2021 Aug 2. PMID: 34338974; PMCID: PMC8502415. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502415/ Acesso em: 27 de fevereiro de 2023.

LYALL, K.; SCHMIDT, R.J.; HERTZ-PICCIOTTO, I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014 Apr;43(2):443-64. doi: 10.1093/ije/dyt282. Epub 2014 Feb 11. PMID: 24518932; PMCID: PMC3997376. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997376/. Acesso em: 10 de setembro de 2023.

MAGNER, M.; THOROVÁ, K.; ŽUPOVÁ, V.; HOUŠKA, M.; ŠVANDOVÁ, I.; NOVOTNÁ, P.; TŘÍSKA, J.; VRCHOTOVÁ, N.; SOURAL, I.; JÍLEK, L. Sulforaphane Treatment in Children with Autism: A Prospective Randomized Double-Blind Study. Nutrients. 2023 Jan 31;15(3):718. doi: 10.3390/nu15030718. PMID: 36771424; PMCID: PMC9920098. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920098/ Acesso em: 02 de março de 2023.

MASI, A.; QUINTANA, D.S.; GLOZIER, N.; LLOYD, A.R.; HICKIE, I.B.; GUASTELLA, A.J. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2015 Apr;20(4):440-6. doi: 10.1038/mp.2014.59. Epub 2014 Jun 17. PMID: 24934179. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24934179/. Acesso em: 10 de setembro de 2023.

MOON, J.H.; LEE, J.H. Probing the diversity of healthy oral microbiome with bioinformatics approaches. BMB Rep. 2016 Dec;49(12):662-670. doi: 10.5483/bmbrep.2016.49.12.164. PMID: 27697111; PMCID: PMC5346311. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346311/. Acesso em: 10 de setembro de 2023.

MOONEY, E.C.; HOLDEN, S.E.; XIA, X.J.; LI, Y.; JIANG, M.; BANSON, C.N.; ZHU, B.; SAHINGUR, S.E. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol. 2021 Nov 26;12:774273. doi: 10.3389/fimmu.2021.774273. PMID: 34899728; PMCID: PMC8663773. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663773/. Acesso em: 10 de setembro de 2023.

PATTERSON, P.H. Maternal infection and immune involvement in autism. Trends Mol Med. 2011 Jul;17(7):389-94. doi: 10.1016/j.molmed.2011.03.001. Epub 2011 Apr 7. PMID: 21482187; PMCID: PMC3135697. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135697/. Acesso em: 10 de setembro de 2023.

SANTOS, P.W.S.; Influência do Sulforafano, um inibidor de histonas desacetilases, sobre a instabilidade genômica e mecanismos epigenéticos em linhagens celulares humanas. Mestrado em Toxicologia – Ribeirão Preto: Universidade de São Paulo, 21 de nov. 2019. Disponível em: https://www.teses.usp.br/teses/disponiveis/60/60134/tde-24052019-145414/publico/Dissertacao_corrigida_completa.pdf. Acesso em: 18 de setembro de 2023.

SIAFIS, S.; ÇIRAY, O.; WU, H.; SCHNEIDER-THOMA, J.; BIGHELLI, I.; KRAUSE, M.; RODOLICO, A.; CERASO, A.; DESTE, G.; HUHN, M.; FRAGUAS, D.; SAN JOSÉ CÁCERES, A.; MAVRIDIS, D.; CHARMAN, T.; MURPHY, D.G.; PARELLADA, M.; ARANGO, C.; LEUCHT, S. Pharmacological and dietary-supplement treatments for autism spectrum disorder: a systematic review and network meta-analysis. Mol Autism. 2022 Mar 4;13(1):10. doi: 10.1186/s13229-022-00488-4. PMID: 35246237; PMCID: PMC8896153. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896153/. Acesso em: 10 de setembro de 2023.

SINGH, K.; CONNORS, S.L.; MACKLIN, E.A.; SMITH, K.D.; FAHEY, J.W.; TALALAY, P.; ZIMMERMAN, A.W. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15550-5. doi: 10.1073/pnas.1416940111. Epub 2014 Oct 13. PMID: 25313065; PMCID: PMC4217462. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217462/ Acesso em: 26 de fevereiro de 2023.

THORNALLEY, P.J. Isothiocyanates: mechanism of cancer chemopreventive action. Anticancer Drugs. 2002 Apr;13(4):331-8. doi: 10.1097/00001813-200204000-00001. PMID: 11984078. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11984078/. Acesso em: 10 de setembro de 2023.

VARGAS, D.L.; NASCIMBENE, C.; KRISHNAN, C.; ZIMMERMAN, A.W.; PARDO, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005 Jan;57(1):67-81. doi: 10.1002/ana.20315. Erratum in: Ann Neurol. 2005 Feb;57(2):304. PMID: 15546155. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/ana.20315. Acesso em: 10 de setembro de 2023.

WANG, R.; HALIMULATI, M.; HUANG, X.; MA, Y.; LI, L.; ZHANG, Z. Sulforaphane-driven reprogramming of gut microbiome and metabolome ameliorates the progression of hyperuricemia. J Adv Res. 2022 Nov 10:S2090-1232(22)00251-X. doi: 10.1016/j.jare.2022.11.003. Epub ahead of print. PMID: 36371056. Disponível em: https://www.sciencedirect.com/science/article/pii/S209012322200251X?via%3Dihub. Acesso em: 07 de maio de 2023.

YANG, J.; FU, X.; LIAO, X.; LI, Y. Nrf2 Activators as Dietary Phytochemicals Against Oxidative Stress, Inflammation, and Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review. Front Psychiatry. 2020 Nov 20;11:561998. doi: 10.3389/fpsyt.2020.561998. PMID: 33329102; PMCID: PMC7714765. Disponível em: https://www.frontiersin.org/articles/10.3389/fpsyt.2020.561998/full. Acesso em: 07 de maio de 2023.

ZHANG, Q.; LIU, J.; DUAN, H.; LI, R.; PENG, W.; WU, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021 Jul 6;34:43-63. doi: 10.1016/j.jare.2021.06.023. PMID: 35024180; PMCID: PMC8655139. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655139/ Acesso em: 27 de fevereiro de 2023.

Downloads

Publicado

2023-10-11

Edição

Seção

Articles