Diagnosis of nitrogen levels in bean leaves using computer vision and artificial neural networks

Diagnóstico de níveis de nitrogênio em folhas de feijão utilizando visão computacional e redes neurais artificiais

Autores

Palavras-chave:

GLCM, LBP, Phaseolus vulgaris, Pattern recognition

Resumo

Determination of nitrogen (N) levels in beans culture are slow or depend on an experienced professional, so the objective of this work is to aid in diagnosis nitrogen levels through of Computational Vision and Artificial Neural Networks (RNA). Beans were grown over 5 doses of N (50, 100, 150, 200 and 250 mg L-1). The data of chlorophyll and N contents and leaves images was realized 45 and 58 days after sowing. To make the diagnosis were used Gray Level Co-Occurrence Matrix (GLCM), non-texturing Statistic and Local Binary Pattern (LBP) for the training and test the Artificial Neural Networks (ANN) and Multilayer Perception for regression and later classification of the levels of N. This work demonstrated that the three methods are promising for determining the levels of N in bean leaves with correlation coefficients greater than 0.7, with GLCM having the best correlation coefficient, 0.74. The combination of the 3 methods provides even better results, with the coefficient rising to 0.76. If the purpose is to diagnose the levels of N in classes, which would help to define whether the levels are adequate or not, there is a percentage of correctness of 81.12%.

Downloads

Não há dados estatísticos.

Referências

BARALDI, A.; PARMIGGIANI, F.. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. Geoscience and Remote Sensing, v. 33, n. 2, p. 293–304, 1995.

BAESSO, M. et al. Determinação do "status" nutricional de nitrogênio no feijoeiro utilizando imagens digitais coloridas. Engenharia Agrícola, v. 8, n. 2, p.520-528, 2007.

BAESSO, M. et al. Determinação do nível de deficiência nutricional de nitrogênio utilizando redes neurais artificiais. Engenharia na Agricultura, v.20, n.6, p. 512-518, 2012.

DUBEY, S. R.; Jalal, A. S., Detection and Classification of Apple Fruit Diseases Using Complete Local Binary Patterns, 3rd International Conference on Computer and Communication Technology, p. 346-351, 2012.

FAQUIN, V.. Diagnose do Estado Nutricional das Plantas. Universidade Federal de Lavras – UFLA, 2002, 77 p.

FILHO, D. B. F.; JÚNIOR, J. A. S. Desvendando os Mistérios do Moeficiente de Correlação de Pearson . Política hoje, v. 18, n. 1, 2009.

FRANK, E. et al. Weka-a machine learning workbench for data mining. Data mining and knowledge discovery handbook, p. 1269-1277, 2009.

GUO, Z.; ZHANG, L.; ZHANG, D.. A completed modeling of local binary pattern operator for texture classification. ieee transactions on image processing, Cidade, v. 19, n. 6, p. 1657-1663, 2010.

HARALICK, R.M., K. SHANMUGAN, I. DINSTEIN, Textural Fetures for Image SILVEIRA, P.M. BRAz, A.J.B.P.; Uso do Clorofilômetro como Indicador da Necessidade de Adubação Nitrogenada em Cobertura no Feijoeiro. Pesquisa Agropecuária Brasileira, v. 38, p. 1083-1087, 2003.

KARCHER, D.E.; RICHARDSON, M.D. Quantifying turfgrass color using digital image analysis. Crop Science, v.43, p.943‐951, 2003.

KAWASHIMA S, NAKATANI M. An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany, v,81, p. 49-54, 1998.

PELEGRIN, R.; MERCANTE, F.M.; OTSUBO, I.M.N. & OTSUBO, A.A. Resposta da cultura do feijoeiro à adubação nitrogenada e à inoculação com rizóbio. Revista Brasileira de Ciência do Solo, v. 33, p. 219-226, 2009.

PENA, C. Cultura do feijão. 2015. Disponível em: <https://plantarcrescercolher.blogspot.com.br/2015/09/cultura-do- feijao-resumo.html>;. Acessa em: 16 abr. 2017.

ROMUALDO, L. M. Utilização de Visão Artificial para diagnóstico nutricional de nitrogênio, fósforo, potássio e manganês em milho. Universidade de São Paulo, 2013.

SARDAR, M. B.; AJIJ, S. Fruit Recognition and its Calorie Measurement: An Image Processing Approach. International Journal of Advanced Trends in Computer Science and Engineering, v. 98, n. 38, p. 18675-18678. 2016.

SILVA, F. C. Da. Manual de análisesquímicas de solos, plantas e fertilizantes. 2 ed. Embrapa, 2009.

SILVEIRA, P. M.; FERREIRA, E. P. B.. Índice de suficiência de nitrogênio determinado pelo clorofilômetro em feijão inoculado com rizóbio e sob adubação nitrogenada. Boletim de Pesquisa e Desenvolvimento, n.56, 16p., 2016.

SOARES, H. R.et al. Comparação de Metodologias para Determinação N-Total em Tecido Vegetal. In: Anais da Joarnada de Ensino, Pesquisa e Extensão – JEPEX, UFRPE, 2013.

VAKILIAN, K.A.; MASSAH, J.. Design, Development and Performance Evaluationof aRobot to Early Detection of Nitrogen Deficiency in Greenhouse Cucumber (Cucumis Sativus) with Machine Vision. International Journal of Agriculture: Research and Review, v.2, n.4, p. 448-454, 2012

ZHANG, B. et al. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. Transactions on image processing, v. 19, n. 2, p. 533-544, 2010.

Downloads

Publicado

2023-09-21

Edição

Seção

Articles