Influence of ZnO nanoparticles on the properties of biodegradable PBAT matrix for food packaging application
Influência da nanopartícula de ZnO sobre as propriedades da matriz biodegradável de PBAT para aplicação em embalagem de alimentos
Palavras-chave:
PBAT, ZnO nanoparticles, nanocomposites, biodegradable packaging, food packagingResumo
Currently, the use of biodegradable polymers for packaging application has been an imperative topic due to the environmental damage caused by non-biodegradable materials. In the present study, PBAT/ZnO biodegradable nanocomposites were prepared by melt processing and characterized by FEG-SEM, DSC, XRD, TDNMR and water activity analysis. The main results showed an increase in the Tc values for all produced formulations, indicating a change in the crystalline profile of the PBAT, which was corroborated by XRD results. FEG-SEM showed that the systems containing up to 1 wt.% of ZnO showed better nanoparticles dispersion, while formulations containing 3 and 5 wt.% of ZnO presented large aggregates. TDNMR provided a more detailed assessment, showing that PBAT/ZnO systems containing 0.5 and 5 wt.% of ZnO presented a higher heterogeneity at molecular level. Finally, water activity analysis showed that ZnO addition promoted an increment in the biosafety levels compared to neat PBAT, making the PBAT/ZnO nanocomposites more promising for food packaging application.
Downloads
Referências
ABBATE DOS SANTOS, F.; BRUNO TAVARES, M. I. Development of biopolymer/cellulose/silica nanostructured hybrid materials and their characterization by NMR relaxometry. Polymer Testing, v. 47, p. 92–100, 9 out. 2015.
ADEYEYE, S. A. O.; ASHAOLU, T. J. Applications of nano-materials in food packaging: A review. Journal of Food Process Engineering. Blackwell Publishing Inc., , 1 jul. 2021.
AHMAD, A. A. et al. Optical, electronic, and structural properties of different nanostructured ZnO morphologies. European Physical Journal Plus, v. 137, n. 6, 1 jun. 2022.
ALEKISH, M. et al. In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: An alternative approach for antibacterial therapy of mastitis in sheep. Veterinary World, v. 11, n. 10, p. 1428–1432, 2018.
AL-ITRY, R.; LAMNAWAR, K.; MAAZOUZ, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. European Polymer Journal, v. 58, p. 90–102, 2014.
ALMASI, H.; JAHANBAKHSH OSKOUIE, M.; SALEH, A. A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd., 2021.
BALAJI, S. et al. Hydrophobic nanocomposites of PBAT with Cl-fn-POSS nanofiller as compostable food packaging films. Polymer Engineering and Science, v. 61, n. 1, p. 314–326, 1 jan. 2021.
BATOOL, M. et al. Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm. Arabian Journal for Science and Engineering, v. 47, n. 1, p. 319–331, 1 jan. 2022.
BHEEMANENI, G.; SARAVANA, S.; KANDASWAMY, R. Processing and Characterization of Poly (butylene adipate-co-terephthalate) / Wollastonite Biocomposites for Medical Applications. Materials Today: Proceedings. [s.l: s.n.]. Disponível em: .
CAPELEZZO, A. P. et al. Antimicrobial biodegradable polymer through additivation with zinc based compounds. Quimica Nova, v. 41, n. 4, p. 367–374, 1 abr. 2018.
CASTRO, D. P. DE; GARCIA, R. H. L.; ANDRADE E SILVA, L. G. Characterization using X-ray diffraction and study of the crystallinity of the thermoplastic starch/poly(butylene adipate-co-terephthalate) blends irradiated by gamma rays. Brazilian Journal of Development, v. 6, n. 3, p. 9635–9643, 2020.
DA COSTA, D.L.M. [et al.]. Filmes biodegradáveis com alto teor de amido produzidos por extrusão: coeficientes de solubilidade e de difusão efetivo e permeabilidade ao vapor de água. A: Congresso Brasileiro de Polímeros. "CBPol 2009: 10º Congresso Brasileiro de Polímeros: Foz do Iguaçu, PR, Brasil: 13 a 17 de outubro de 2009: livro de resumos". São Carlos: Cubo Multimídia, 2009, p. 1-7. ISBN 2176-0020.
DA ROCHA, L. V. M.; DA SILVA, P. S. R. C.; TAVARES, M. I. B. Thermostructural evaluation of poly(butylene adipate-co-terephthalate) /molybdenum trioxide nanocomposites through time domain nuclear magnetic resonance and other conventional techniques / Avaliação termo-estrutural de nanocompósitos de poli(adipato-co-tereftalato de butileno) / trióxido de molibdénio através de ressonância magnética nuclear no domínio do tempo e outras técnicas convencionais. Brazilian Journal of Development, v. 8, n. 5, p. 36588–36601, 11 maio 2022.
DE SOUZA, A. G. et al. The effect of ZnO nanoparticles as Ag-carrier in PBAT for antimicrobial films. Polymer Bulletin, v. 79, n. 6, p. 4031–4048, 1 jun. 2022.
GARCIA, C. V.; SHIN, G. H.; KIM, J. T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science and Technology. Elsevier Ltd, , 1 dez. 2018.
HERRERA BRANDELERO, R. P.; GROSSMANN, M. V.; YAMASHITA, F. Hidrofilicidade de Filmes de Amido/Poli(Butileno Adipato Co-Tereftalato) (Pbat) Adicionados de Tween 80 e Óleo de Soja Hydrophilicity of Starch and Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Films Containing Tween 80 and Soybean Oil. Polímeros. 23. 270-275. 10.4322/S0104-14282013005000011.
HUTAPEA, S. et al. Study on food preservation materials based on nano-particle reagents. Food Science and Technology (Brazil), v. 42, 2022.
JIAN, J.; XIANGBIN, Z.; XIANBO, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research. KeAi Communications Co., 1 jan. 2020.
KARGARZADEH, H.; GALESKI, A.; PAWLAK, A. PBAT green composites: Effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer, v. 203, 26 ago. 2020.
MARDOSAITĖ, R.; JURKEVIČIŪ TĖ, A.; RAČKAUSKAS, S. Superhydrophobic ZnO Nanowires: Wettability Mechanisms and Functional Applications. Crystal Growth and Design. American Chemical Society, , 4 ago. 2021.
MONDAL, D. et al. Antimicrobial activity and biodegradation behavior of poly(butylene adipate-co-terephthalate)/clay nanocomposites. Journal of Applied Polymer Science, v. 131, n. 7, 5 abr. 2014.
OLIVEIRA, F. DE et al. Microbial colorants production in stirred-tank bioreactor and their incorporation in an alternative food packaging biomaterial. Journal of Fungi, v. 6, n. 4, p. 1–14, 1 dez. 2020.
PASCARIU, P. et al. New electrospun ZnO:MoO3 nanostructures: Preparation, characterization and photocatalytic performance. Nanomaterials, v. 10, n. 8, p. 1–18, 1 ago. 2020.
PHOTHISARATTANA, D.; HARNKARNSUJARIT, N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packaging and Shelf Life, v. 33, 1 set. 2022.
SERAY, M.; SKENDER, A.; HADJ-HAMOU, A. S. Kinetics and mechanisms of Zn2+ release from antimicrobial food packaging based on poly (butylene adipate-co-terephthalate) and zinc oxide nanoparticles. Polymer Bulletin, v. 78, n. 2, p. 1021–1040, 1 fev. 2021.
SHAIKH, S.; YAQOOB, M.; AGGARWAL, P. An overview of biodegradable packaging in food industry. Current Research in Food Science. Elsevier B.V., , 1 jan. 2021.
SHANKAR, S. et al. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, v. 45, p. 264–271, 1 mar. 2015.
SPOIALĂ, A. et al. Zinc oxide nanoparticles forwater purification. Materials, v. 14, n. 16, 2 ago. 2021.
TAPÍA, M. S.; ALZAMORA, S. M.; CHIRIFE, J. Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. Em: Water Activity in Foods: Fundamentals and Applications. [s.l.] wiley, 2020. p. 323–355.
THABIT, H. A.; A. KABIR, N. The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v. 436, p. 278–284, 1 dez. 2018.
THIYAGU, T. T. et al. Effect of SiO2/TiO2 and ZnO Nanoparticle on Cardanol Oil Compatibilized PLA/PBAT Biocomposite Packaging Film. Silicon, v. 14, n. 7, p. 3795–3808, 1 maio 2022.
THONGSONG, W.; KULSETTHANCHALEE, C.; THREEPOPNATKUL, P. Effect of polybutylene adipate-co-terephthalate on properties of polyethylene terephthalate thin filmsMaterials Today: Proceedings. [s.l: s.n.]. Disponível em: .
UMAVATHI, S. et al. Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: A novel approach for advancing efficient high quality health care to human wellbeing. Saudi Journal of Biological Sciences, v. 28, n. 3, p. 1808–1815, 1 mar. 2021.
VENKATESAN, R.; RAJESWARI, N. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polymers for Advanced Technologies, v. 28, n. 1, p. 20–27, 1 jan. 2017.
WANG, R. et al. Thermal decomposition behavior and kinetics of nanocomposites at low-modified ZnO content. RSC Advances, v. 9, n. 2, p. 790–800, 2019.
WELTI-CHANES, J. et al. Applications of Water Activity Management in the Food Industry. Em: Water Activity in Foods: Fundamentals and Applications. [s.l.] Blackwell Publishing Ltd, 2008. p. 341–357.
YU, F. et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. Journal of Hazardous Materials, v. 415, 5 ago. 2021.
ZEHETMEYER, G. et al. Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. Journal of Applied Polymer Science, v. 133, n. 13, 5 abr. 2016.