Classifications and applications of biocomposites: a bibliometric review and analysis

Classificações e aplicações de biocompósitos: uma revisão e análise bibliométrica

Autores

Resumo

The growing environmental concern for the rational use of natural resources has driven the development of new materials. Biocomposites have receiving increasing attention due to the enormous potential to replace synthetic materials in certain applications, together with the environmental gains offered. The present work aimed at review studies that developed Biocomposites and to carry out a bibliometric analysis using a keyword: “Biocomposite”. Based on the bibliometric analysis using the VOSviewer software and the Scopus and Web of Science databases, it was possible to verify the number of publications over the years as well as the countries and authors with the most published articles on the topic. Thereafter, a review providing an overview regarding the compositions of biocomposites, topics that need improvement, characterization properties, main applications and environmental benefits obtained with their use was carried out. The obtained results showed that needs for the development of new researches in order to improve biocomposites when compared to synthetic composites.

Downloads

Não há dados estatísticos.

Referências

ALAVUDEEN, A.; RAJINI, N.; KARTHIKEYAN, S.; THIRUCHITRAMBALAM, M. et al. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design, 66, p. 246-257, 2015.

ANUGWOM, I.; LAHTELA, V.; KALLIOINEN, M.; KÄRKI, T. Lignin as a functional additive in a biocomposite: Influence on mechanical properties of polylactic acid composites. Industrial Crops and Products, 140, p. 111704, 110926-116690, 2019.

AVEROUS, L.; BOQUILLON, N. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate polymers, 56, n. 2, p. 111-122, 2004.

BAR, M.; ALAGIRUSAMY, R.; DAS, A. Flame retardant polymer composites. Fibers and polymers, 16, n. 4, p. 705-717, 1229-9197, 2015.

BASSYOUNI, M.; HASAN, S. W. U. The use of rice straw and husk fibers as reinforcements in composites. Biofiber reinforcements in composite materials, p. 385-422, 2015.

BETTINI, S. H. P.; ULIANA, A. T.; HOLZSCHUH, D. Effect of process parameters and composition on mechanical, thermal, and morphological properties of polypropylene/sawdust composites. Journal of applied polymer science, 108, n. 4, p. 2233-2241, 2008.

BLEDZKI, A. K.; JASZKIEWICZ, A.; MURR, M.; SPERBER, V. E. et al. Processing techniques for natural-and wood-fibre composites. Properties and performance of natural-fibre composites, p. 163-192, 2008.

BOLAND, C. S.; DE KLEINE, R.; KEOLEIAN, G. A.; LEE, E. C. et al. Life cycle impacts of natural fiber composites for automotive applications: effects of renewable energy content and lightweighting. Journal of Industrial Ecology, 20, n. 1, p. 179-189, 2016.

BORDÓN, P.; ELDUQUE, D.; PAZ, R.; JAVIERRE, C. et al. Analysis of processing and environmental impact of polymer compounds reinforced with banana fiber in an injection molding process. Journal of Cleaner Production, 379, p. 134476, 2022.

CHEUNG, W. M.; LEONG, J. T.; VICHARE, P. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. Journal of Cleaner Production, 167, p. 759-775, 2017.

CÉLINO, A.; FRÉOUR, S.; JACQUEMIN, F.; CASARI, P. The hygroscopic behavior of plant fibers: a review. Frontiers in chemistry, 1, 43 p. 2014.

COOPER, C. J.; ABDELWAHAB, M. A.; MOHANTY, A. K.; MISRA, M. Hybrid Green Bionanocomposites of Bio-based Poly (butylene succinate) Reinforced with Pyrolyzed Perennial Grass Microparticles and Graphene Nanoplatelets. ACS omega, 4, n. 24, p. 20476-20485, 22470-21343, 2019.

DAS, G.; BISWAS, S. Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites. Journal of Reinforced Plastics and Composites, 35, n. 8, p. 644-653, 2016.

DE SOUZA, M. P.; HOELTZ, M.; BRITTES BENITEZ, L.; MACHADO, Ê. L. et al. Microalgae and Clean Technologies: A Review. CLEAN–Soil, Air, Water, 47, n. 11, p. 1801863-1800650, 2019.

DIAZ-GOMEZ, L.; GONZALEZ-PRADA, I.; MILLAN, R.; DA SILVA-CANDAL, A. et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate Polymers, 278, p. 118924, 2022.

DICKER, M. P. M.; DUCKWORTH, P. F.; BAKER, A. B.; FRANCOIS, G. et al. Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing, 56, p. 280-289, 1359-1835X, 2014.

EL-SAMAD, L. M.; HASSAN, M. A.; BASHA, A. A.; EL-ASHRAM, S. et al. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. International Journal of Pharmaceutics, 629, p. 122328, 2022.

ESPINOSA, E.; BASCÓN-VILLEGAS, I.; ROSAL, A.; PÉREZ-RODRÍGUEZ, F. et al. PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International journal of biological macromolecules, 141, p. 197-206, 0141-8130, 2019.

FANG, X.; LI, Y.; ZHAO, J.; XU, J. et al. Improved interfacial performance of bamboo fibers/polylactic acid composites enabled by a self-supplied bio-coupling agent strategy. Journal of Cleaner Production, 380, p. 134719, 130959-136526, 2022.

FATH, M. T. A.; NASUTION, H.; HARAHAP, H.; AYU, G. E. et al. Biocomposite of pectin and starch filled with nanocrystalline cellulose (NCC): The effect of filler loading and glycerol addition. AIP Conference Proceedings, 020012, 0735419221, 2019.

FENI, F.; JAHAN, M.; DAWAN, F.; IBEKWE, S. et al. Enhancing the mechanical performance of carbon fiber reinforced polymer using carbonized coconut shell particles. Materials Today Communications, 33, p. 104727, 2022.

FERRARI, P. F.; ZATTERA, E.; PASTORINO, L.; PEREGO, P. et al. Dextran/poly-L-arginine multi-layered CaCO3-based nanosystem for vascular drug delivery. International Journal of Biological Macromolecules, 177, p. 548-558, 2021.

FINKENSTADT, V. L.; TISSERAT, B. Poly (lactic acid) and Osage Orange wood fiber composites for agricultural mulch films. Industrial crops and products, 31, n. 2, p. 316-320, 2010.

FRANCIS, R.; SASIKUMAR, S.; GOPALAN, G. P. Synthesis, Structure, and Properties of Biopolymers (Natural and Synthetic). Polymer composites, 2013.

GE, X.; HUANG, X.; ZHOU, L.; WANG, Y. Essential oil-loaded antimicrobial and antioxidant zein/poly (lactic acid) film as active food packaging. Food Packaging and Shelf life, 34, p. 100977, 2022.

GEORGE, A.; SANJAY, M. R.; SRIUSK, R.; PARAMESWARANPILLAI, J. et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 0141-8130, 2020.

GUO, L.; MENG, A.; WANG, L.; HUANG, J. et al. Improving the compatibility, surface strength, and dimensional stability of cellulosic fibers using glycidyl methacrylate grafting. Journal of Materials Science, p. 1-15, 1573-4803, 2020.

GURUNATHAN, T.; MOHANTY, S.; NAYAK, S. K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, p. 1-25, 2015.

HACHAICHI, A.; NEKKAA, S.; AMROUNE, S.; JAWAID, M. et al. Effect of alkali surface treatment and compatibilizer agent on tensile and morphological properties of date palm fibers‐based high density polyethylene biocomposites. Polymer Composites, 43, n. 10, p. 7211-7221, 0272-8397, 2022.

HAYLOCK, R.; ROSENTRATER, K. A. Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26, n. 4, p. 1484-1503, 2018.

HIRVIKORPI, T.; VÄHÄ-NISSI, M.; HARLIN, A.; SALOMÄKI, M. et al. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al2O3 double-coating. Applied Surface Science, 257, n. 22, p. 9451-9454, 0169-4332, 2011.

HOSSEINAEI, O.; WANG, S.; ENAYATI, A. A.; RIALS, T. G. Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43, n. 4, p. 686-694, 2012.

INSEEMEESAK, B.; SIRIPAIBOON, C.; SOMKEATTIKUL, K.; ATTASOPHONWATTANA, P. et al. Biocomposite fabrication from pilot-scale steam-exploded coconut fiber and PLA/PBS with mechanical and thermal characterizations. Journal of Cleaner Production, 379, p. 134517, 2022.

KERNI, L.; SINGH, S.; PATNAIK, A.; KUMAR, N. A review on natural fiber reinforced composites. Materials Today: Proceedings, 2020.

KHAN, M. Z. R.; SRIVASTAVA, S. K.; GUPTA, M. K. Tensile and flexural properties of natural fiber reinforced polymer composites: A review. Journal of Reinforced Plastics and Composites, 37, n. 24, p. 1435-1455, 0731-6844, 2018.

LEELAPHIWAT, P.; PECHPRANKAN, C.; SIRIPHO, P.; BUMBUDSANPHAROKE, N. et al. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chemistry, 369, p. 130956, 2022.

LEONG, Y. W.; THITITHANASARN, S.; YAMADA, K.; HAMADA, H. Compression and injection molding techniques for natural fiber composites. Natural Fibre Composites, p. 216-232, 2014.

LI, H.; SUN, J.-T.; WANG, C.; LIU, S. et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chemistry & Engineering, 5, n. 9, p. 7942-7949, 2168-0485, 2017.

LUKASIEWICZ, B.; BASNETT, P.; NIGMATULLIN, R.; MATHARU, R. et al. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomaterialia, 71, p. 225-234, 2018.

LUZ, S. M.; CALDEIRA-PIRES, A.; FERRÃO, P. M. C. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling, 54, n. 12, p. 1135-1144, 0921-3449, 2010.

LÉVESQUE, S. G.; LIM, R. M.; SHOICHET, M. S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 26, n. 35, p. 7436-7446, 2005.

MAZZANTI, V.; PARIANTE, R.; BONANNO, A.; DE BALLESTEROS, O. R. et al. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology, 180, p. 51-59, 2019.

MILLER, S. A.; BILLINGTON, S. L.; LEPECH, M. D. Influence of carbon feedstock on potentially net beneficial environmental impacts of bio-based composites. Journal of Cleaner Production, 132, p. 266-278, 2016.

MOHAMMAD, F.; ARFIN, T.; BWATANGLANG, I. B.; AL-LOHEDAN, H. A. Starch-Based Nanocomposites: Types and Industrial Applications. Bio-based Polymers and Nanocomposites, p. 157-181, 2019.

MOHANTY, A. K.; MISRA, M.; DRZAL, L. T. Natural fibers, biopolymers, and biocomposites, 2005.

NAGARAJAN, V.; MOHANTY, A. K.; MISRA, M. Sustainable green composites: Value addition to agricultural residues and perennial grasses. ACS Sustainable Chemistry & Engineering, 1, n. 3, p. 325-333, 2168-0485, 2013.

NAST, M. R.; COLARES, G. S.; MACHADO, Ê. L.; RODRIGUES, L. R. Wastewater treatment using bamboos in constructed wetlands: experiences and future perspectives. Environmental Science and Pollution Research, 29, n. 45, p. 67641-67658, 2022.

ODEGARD, I.; NUSSELDER, S.; LINDGREEN, E. R.; BERGSMA, G. et al. Biobased Plastics in a Circular Economy: Policy Suggestions for Biobased and Biobased Biodegradable Plastics. Delft, 17, p. J66, 2017.

OTHMAN, N. A. F.; SELAMBAKKANNU, S.; SEKO, N. Biodegradable dual-layer polyhydroxyalkanoate (pha)/polycaprolactone (pcl) mulch film for agriculture: Preparation and characterization. Energy Nexus, 8, p. 100137, 2022.

PANG, B.; ZHOU, T.; CAO, X.-F.; ZHAO, B.-C. et al. Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. Journal of Cleaner Production, 375, p. 134037, 2022.

PARKUNAM, N.; SARAVANAN, S.; NAVANEETHAKRISHNAN, G.; ARAVINDH, M. et al. Natural composites integrated with fire retardants: A review. Materials Today: Proceedings, 21, p. 113-115, 2020.

PEÇAS, P.; CARVALHO, H.; SALMAN, H.; LEITE, M. Natural fibre composites and their applications: a review. Journal of Composites Science, 2, n. 4, p. 66, 2018.

PICKERING, K. L.; EFENDY, M. G. A.; LE, T. M. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, p. 98-112, 2016.

PRAKASH, V. R. A.; VISWANATHAN, R. Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite. International Journal of Plastics Technology, 23, n. 2, p. 207-217, 0972-0656X, 2019.

RAJ, S. N.; LAVANYA, S. N.; SUDISHA, J.; SHETTY, H. S. Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection. Biopolymers: Biomédical and Environmental Applications, p. 461-481, 2011.

RAMESH, M.; PALANIKUMAR, K.; REDDY, K. H. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 79, p. 558-584, 2017.

RAPA, M.; DARIE-NITA, R. N.; PREDA, P.; COROIU, V. et al. PLA/collagen hydrolysate/silver nanoparticles bionanocomposites for potential antimicrobial urinary drains. Polymer-Plastics Technology and Materials, 58, n. 18, p. 2041-2055, 2574-0881, 2019.

RASHAD, A. M. The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Materials Science and Technology, 35, n. 2, p. 127-146, 0267-0836, 2019.

REYES, P. R.; PARLANE, N. A.; WEDLOCK, D. N.; REHM, B. H. Immunogencity of antigens from Mycobacterium tuberculosis self-assembled as particulate vaccines. International Journal of Medical Microbiology, 306, n. 8, p. 624-632, 2016.

SABALIAUSKAITĖ, K.; KLIAUGAITĖ, D. Resource efficiency and carbon footprint minimization in manufacture of plastic products. Environmental Research, Engineering and Management, 67, n. 1, p. 25-34, 2014.

SADASIVUNI, K. K.; SAHA, P.; ADHIKARI, J.; DESHMUKH, K. et al. Recent advances in mechanical properties of biopolymer composites: a review. Polymer Composites, 41, n. 1, p. 32-59, 0272-8397, 2020.

SADEGHIANMARYAN, A.; NAGHIEH, S.; YAZDANPANAH, Z.; SARDROUD, H. A. et al. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. International Journal of Biological Macromolecules, 204, p. 62-75, 2022.

SANJAY, M. R.; SIENGCHIN, S.; PARAMESWARANPILLAI, J.; JAWAID, M. et al. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate polymers, 207, p. 108-121, 0144-8617, 2019.

SANYANG, M. L.; SAPUAN, S. M.; JAWAID, M.; ISHAK, M. R. et al. Effect of sugar palm-derived cellulose reinforcement on the mechanical and water barrier properties of sugar palm starch biocomposite films. BioResources, 11, n. 2, p. 4134-4145, 1930-2126, 2016.

SANYANG, M. L.; SAPUAN, S. M.; JAWAID, M.; ISHAK, M. R. et al. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, p. 533-549, 1364-0321, 2016.

SARI, N. H.; SANJAY, M. R.; ARPITHA, G. R.; PRUNCU, C. I. et al. Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: evaluation of dicumyl peroxide (DCP) effect. Composites Communications, 15, p. 53-57, 2019.

SASIMOWSKI, E.; MAJEWSKI, Ł.; GROCHOWICZ, M. Influence of the Design Solutions of Extruder Screw Mixing Tip on Selected Properties of Wheat Bran-Polyethylene Biocomposite. Polymers, 11, n. 12, p. 2120, 2019.

SIMÕES, C. L.; PINTO, L. M. C.; SIMOES, R.; BERNARDO, C. A. Integrating environmental and economic life cycle analysis in product development: a material selection case study. The International Journal of Life Cycle Assessment, 18, n. 9, p. 1734-1746, 0948-3349, 2013.

SUHAILY, S. S.; JAWAID, M.; ABDUL KHALIL, H. P. S.; MOHAMED, A. R. et al. A review of oil palm biocomposites for furniture design and applications: potential and challenges. BioResources, 7, n. 3, p. 4400-4423, 1930-2126, 2012.

TAWIAH, B.; YU, B.; WEI, R.; YUEN, R. K. K. et al. Simultaneous fire safety enhancement and mechanical reinforcement of poly (lactic acid) biocomposites with hexaphenyl (nitrilotris (ethane-2, 1-diyl)) tris (phosphoramidate). Journal of hazardous materials, 380, p. 120856, 120304-123894, 2019.

THOMAS, D.; MATHEW, N.; NATH, M. S. Starch modified alginate nanoparticles for drug delivery application. International Journal of Biological Macromolecules, 173, p. 277-284, 2021.

TIAN, H.; TANG, Z.; ZHUANG, X.; CHEN, X. et al. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 37, n. 2, p. 237-280, 0079-6700, 2012.

TIAN, F.; ZHONG, Z. Modeling of load responses for natural fiber reinforced composites under water absorption. Composites Part A: Applied Science and Manufacturing, 125, p. 105564, 2019.

TOWNSEND, T.; SETTE, J. Natural fibres: advances in science and technology towards industrial applications. Natural fibres and the world economy, p. 381-390, 2016.

TRIVEDI, A. K.; GUPTA, M.; SINGH, H. PLA Based Biocomposites for Sustainable Products: A Review. Advanced Industrial and Engineering Polymer Research, 2023.

TRIWULANDARI, E.; GHOZALI, M.; SONDARI, D.; SEPTIYANTI, M. et al. Effect of lignin on mechanical, biodegradability, morphology, and thermal properties of polypropylene/polylactic acid/lignin biocomposite. Plastics, Rubber and Composites, 48, n. 2, p. 82-92, 1465-8011, 2019.

VLAEV, L.; TURMANOVA, S.; DIMITROVA, A. Kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking. Journal of polymer research, 16, n. 2, p. 151-164, 2009.

VÄISÄNEN, T.; DAS, O.; TOMPPO, L. A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, p. 582-596, 2017.

VÄISÄNEN, T.; HAAPALA, A.; LAPPALAINEN, R.; TOMPPO, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, p. 62-73, 2016.

WANG, S. H.-M.; CHANG, S.-P.; SHI, J. et al. Determination of Sustainable Design-Centered Factors for Manufacturing Bioprinting Material of Polylactic Acid. American Society of Mechanical Engineers, 2015.

YADAV, A.; MANGARAJ, S.; SINGH, R.; KUMAR, N. et al. Biopolymers as packaging material in food and allied industry, 2018.

YANG, W.; TAWIAH, B.; YU, C.; QIAN, Y.-F. et al. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 110, p. 227-236, 2018.

YASHAS GOWDA, T. G.; SANJAY, M. R.; SUBRAHMANYA BHAT, K.; MADHU, P. et al. Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5, n. 1, p. 1446667, 2018.

YE, X.; ZHANG, Y.; LIU, T.; CHEN, Z. et al. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 209, p. 1553-1561, 2022.

YUSOF, F. M.; WAHAB, N. A.; RAHMAN, N. L. A.; KALAM, A. et al. Properties of treated bamboo fiber reinforced tapioca starch biodegradable composite. Materials Today: Proceedings, 16, p. 2367-2373, 2214-7853, 2019.

ZHANG, J.; CHEN, J.; ZHANG, C.; YI, H. et al. Characterization and antibacterial properties of chitosan–polyvinyl alcohol-3-phenyllactic acid as a biodegradable active food packaging. Food Packaging and Shelf Life, 34, p. 100963, 2022.

Downloads

Publicado

2023-09-09

Edição

Seção

Articles