Characterization and cytotoxity analysis of acuthy chestnut (Couepia edulis Prance) for use in herbal therapy

Caracterização e análise de citotoxidade da castanha-de-cutia (Couepia edulis Prance) para utilização na fitoterapia

Autores

  • Linda Karolayne Tenório dos Santos Universidade Federal do Amazonas
  • Emerson Silva Lima
  • Felipe Moura Araújo da Silva
  • Alexandre Augusto Barai
  • Rita de Cássia Saraiva Nunomura
  • Francisca das Chagas do Amaral
  • Whendel Mesquita do Nascimento
  • Adele Salomão de Oliveira
  • Rosany Piccolotto Carvalho

Palavras-chave:

Chrysobalanaceae, Herbal medicine, Couepia edulis, Amazonian oilseeds

Resumo

The Brazilian Amazon rainforest is rich in natural resources, which are widely used in areas such as food and health, especially for local populations. Couepia edulis Prance is a tree from the Amazon, consisting of fruits called agouti nut, which its use as a herbal medicine is widespread in the Amazon region. That said, the aim of this article was to verify the cytotoxicity of Agouti nut oil. For this, the nutritional characteristics, physical-chemical and bioactive properties of agouti nut oil were verified, for subsequent cytotoxicity bioassay. In the centesimal composition it was identified: Caloric Value 658.84± 0.02; Proteins 10.01 ± 0.03; Ash 2.34 ± 0.04; Lipids 61.20 ± 0.15; Carbohydrates 17.00 ± 0.20; Fibers 29.74 ± 0.64. In the fatty acid profile: arachidic (0.42%), palmitoleic (1.02%), stearic (7.11%), linoleic (14%), palmitic (29.20%), oleic (35.01%). In the cytotoxicity assay at different extract concentrations (100; 50; 6.25 and 1.56 µg.mL-1) cell viability of 78.60 to 90.20% was identified. We conclude that the almond and the oil of the Agouti nut at the nutritional and physical-chemical level were within the food standards for consumption, with a high content of total fibers.

Downloads

Não há dados estatísticos.

Referências

Aquino-Bolaños, E., Huerta, E., del Campo, S., Meza, S., Servia, J., Meza, H., Contreras, R. (2019). Physical and chemical characterization of oil the from the tapirira mexicana marchand seed. Interciência, 44(4), 236-240.

AOCS. (1996). Official methods and recommended praticces of the American Oil Chemists` Society. Champaign.

Ahmad, F., Anderson, R. (2021). The Leading Causes of Death in the US for 2020. JAMA, 325(18), 1829–1830. https://doi.org/10.1001/jama.2021.5469

Ataide, B., Vinagre, E., Toro, M. (2020). Obtaining and determining the physicochemical parameters of inajá almond oil. Advances in Science, Food Technology, 2, 296-304. https://doi.org/10.37885/201102221

Arnoso, B., Costa, G., Schmidt, B. (2019). Bioavailability and classification of phenolic compounds. Nutr Bras, 18(1), 39-48. https://doi.org/10.33233/nb.v18i1.1432

Assis, O., Pessoa, J. (2009). An evaluation of fibrous structure and physical characteristics of Cutia nut (Couepia edulis Prance) shell. Acta Amaz, 39(4), 981-986. https://doi.org/10.1590/S0044-59672009000400027

Bredin, Y., Hawes, J., Peres, C., Haugaasen, T. (2020). Structure and Composition of Terra Firme and Seasonally Flooded Várzea Forests in the Western Brazilian Amazon. Forests, 11(12), 1361. https://doi.org/10.3390/f11121361

Bernaud, F., Rodrigues, T. (2013). Dietary fiber: adequate intake and effects on metabolism health. Arq Bras Endocrinol Metab, 57(6), 397-405. https://doi.org/10.1590/S0004-27302013000600001

Borges, L., Amorim, V. (2020). Secondary plant metabolites. Revista Agrotecnologia 11(1), 54-67.

Bonneau, X., Impens, R. (2022). Experimental determination of the optimum oil palm planting density in Western Africa. OCL Oilseeds and fats crops and lipids, 29, 30-40. https://doi.org/10.1051/ocl/2022019

Carta, G., Murru, E., Banni, S., Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol, 8. https://doi.org/10.3389/fphys.2017.00902

Costa, T., Jorge, N. (2011). Beneficial Bioactive Compounds Present in Nuts and Walnuts. Ciência Biológica e da Saúde, 13(3), 195–203.

Costa-Singh, T., Biitencourt, T., Jorge, N. (2012). Characterization and bioactive compounds of cutia-nut oil (Couepia edulis). Revista Do Instituto Adolfo Lutz, 71(1), 61–68. https://doi.org/10.53393/rial.2012.v71.32392

Egea, M., Lima, D., Lodete, A., Takeuchi, K. (2017). Bioactive Compounds in Nuts and Edible Seeds: Focusing on Brazil Nuts and Baru Almond of the Amazon and Cerrado Brazilian Biomes. J Nutr Metab, 3(2).

Falzon, C., Balabanova, A. (2017). Phytotherapy: An Introduction to Herbal Medicine. Prim Care, 44(2), 217 - 227. https://doi.org/10.1016/j.pop.2017.02.001

Ferreira, E., Santos, E., Monteiro, J., Gomes, M., Menezes, R., Souza, M. (2019). The use of medicinal and phytotherapy plants: an integrational review on the nurses' performance. Brazilian Journal of Health Review, 2(3), 1511-1523.

Fayezi, S., Leroy, J., Novin, M., Darabi, M. (2018). Oleic acid in the modulation of oocyte and preimplantation embryo development. Zygote, 26(1), 1-13. https://doi.org/10.1017/S0967199417000582

Freiria, E. (2018). Bromatology. Londrina: Educational Publisher and Distributor S.A.

Freitas, D., Lopes, G., Nascimento, B., Pereira, L., Batista, R., Junior, P. (2020). Conjugated linoleic acid as a potential bioactive molecule to modulates gamete and embryo cryotolerance, Cienc. anim. Bras, 21(1). https://doi.org/10.1590/1809-6891v21e-63574

Funasaki, M., Menezes, I., Santos, H., Zanotto, S., Carioca, C. (2013). Tocopherol profile of Brazil nut oil from different geographic areas of the Amazon region. Acta Amaz, 43 (4). https://doi.org/10.1590/S0044-59672013000400012

Grilo, E., Costa, P., Lima, M. et al. (2013). Determination of vitamin E in cashew and its relation to the nutritional recommendations in humans. Rev Inst Adolfo Lutz, 72(1), 41-46.

Guinaz, M., Milagres, R., Pinheiro-Sant'Ana, H., Chaves, J. (2009) Tocopherols and tocotrienols in vegetable oils and eggs,. Quím. Nova, 32(8), 2098-2103. https://doi.org/10.1590/S0100-40422009000800021

Gilbraith, W., Carter, J., Adams, K., Booksh, K., Ottaway, J. (2021). Improving Prediction of Peroxide Value of Edible Oils Using Regularized Regression Models. Molecules, 26(23), 7281. https://doi.org/10.3390/molecules26237281

Institute of Medicine. (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington: National Academies Press

Instituto Adolfo Lutz. (2008). Métodos Químicos e Físicos para Análise de Alimentos. São Paulo: IAL

Izar, M. et al. (2021). Position on Fat Consumption and Cardiovascular Health – 2021. Arq. Bras. Cardiol, 116 (1). https://doi.org/10.36660/abc.20210278

Jain, C., Khatana, S., Vijayvergia, R. (2019). Bioactivity of secondary metabolites of various plants: a review. IJPSR, 10(2), 494-504. https://doi.org/10.13040/IJPSR.0975-8232.10(2).494-04

Lutz, M., Fuentes, E., Ávila, F., Alarcón, M., Palomo, I. (2019). Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules, 24(2), 366. https://doi.org/10.3390/molecules24020366

Marengo, J., Souza, C., Thonicke, K., Burton, C., Halladay, K., Betts, R. (2018). Changes in climate and land use over the Amazon region: current and future variability and trend. Front. Earth Sci, 6: 228. https://doi.org/10.3389/feart.2018.00228

Mahan, L., Raymond, J. (2018). Krause food, nutrition and diet therapy. Rio de Janeiro: Elsevier

Martínez-González, M., Gea, A., Ruiz-Canela, M. (2019) The Mediterranean Diet and Cardiovascular Health. Circ Res, 124(5), 779-798. https://doi.org/10.1161/CIRCRESAHA.118.313348

Mesquita, J et al. (2020). Fatty acid profile and physicochemical characterization of buriti oil during storage. Ciência Rural, 50(11). https://doi.org/10.1590/0103-8478cr20190997

Moura, C., Silva, B., Castro, A., Moura, E., Veloso, M., Sittolin, I., Araujo, E. (2019). Physicochemical Characterization of Oleaginous Vegetable Oils Adaptable to the Brazilian Northeast with Potential for Biodiesel Production. Rev. Virtual Quim, 11(3), 573-595.

Miraldi, E., Baini, G. (2018) Medicinal plants and health in human history: From empirical use to modern phytotherapy. Journal of the Siena academy of Sciences, 10, 7-12. https://doi.org/10.4081/jsas.2018.8529

Nogueira, L., Silva, P., Morimoto, J., Ricci, R., Maximino, P., Fisberg, M. (2020). Fiber consumption and eating difficulties in childhood: contributing foods and associated factors. Saúde (Santa Maria), 46(2). https://doi.org/10.5902/2236583448311

Olaniyi, A., Babalola, O., Oyediran, A. (2014). Physicochemical properties of palm kernel oil. Research Journal of Biological Sciences, 6(5), 205-207

Pizzorno, J., Murray, M. (2020). Textbook of Natural Medicine. Churchill Livingstone: Londres.

Pinto, T., Aires, A., Cosme, F., Bacelar, E., Morais, M., Oliveira, I., Ferreira-Cardoso, J., Anjos, R., Vilela, A., Gonçalves, B. (2021). Bioactive (Poly)phenols, Volatile Compounds from Vegetables Medicinal and Aromatic Plants. Foods, 10(1), 106. https://doi.org/10.3390/foods10010106

Quinalha. F., Manin, P., Antunes, M et al. (2021). Influence of fatty acids composition in different tissue of mice feeds with fish oils. Research, Society and Development, 10(16). https://doi.org/10.33448/rsd-v10i16.23706

Santos, D., Moraes, J., Araujo, Z., Silva, I. (2019). Traditional knowledge about medicinal plants in the conservation of Amazonian biodiversity. Ciências em Foco, 12(1), 86-95.

Silva, A., Cardozo, L., Cruz, B,, Mafra, D., Stockler-Pinto, M. (2019). Nuts and cardiovascular diseases: focus on Brazil nuts. Int. j. cardiovasc. Sci, 32(3), 274-282. https://doi.org/10.5935/2359-4802.20190016

Sarvmeili, N., Jafarian-Dehkordi, A., Zolfaghari, B. (2016). Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines. Res Pharm Sci, 11(6), 476–483. https://doi.org/10.4103/1735-5362.194887

Schons, J., Fiori, K., Ribeiro, E., Andrighetti, C., Nogueira, R., Valladão, D. (2017). Ultrasound-assisted extraction and characterization of oil from Brazil nut (Bertholletia excelsa H.B.K.). Interciencia, 42(9), 586-590.

Taşğin, E. (2017). Macronutrients and Micronutrients in Nutrition. International Journal of Innovative Research and Reviews, 1(1), 10-15.

Tutunchi, H., Ostradahime, A., Saghafi-asl, M. (2020). The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies. Adv Nutr, 11(4), 864–877. https://doi.org/10.1093/advances/nmaa013

Wei, C., Yen, P., Chang, S., Cheng, P., Lo, Y., Liao, V. (2016) . Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. PLoS Um, 11 (6). https://doi.org/10.1371/journal.pone.0157195

Vieira, J., Sousa, T., Rosas, L. et al. (2018) Homogeneous esterification and transesterification of vegetable oils with high free fatty acids content. Quim. Nova, 41(1), 10-16. https://doi.org/10.21577/0100-4042.20170148

Varona, E., Tres, A., Rafecas, M., Vichi, S et al. (2021). Methods to determine the quality of acid oils and fatty acid distillates used in animal feeding. MethodsX, 8. https://doi.org/10.1016/j.mex.2021.101334

Xu, L., Wang, W., Zhan, X. et al. (2019). Palmitic acid causes insulin resistance in granulosa cells via activation of JNK. Journal of Molecular Endocrinology, 62(4), 197-206. https://doi.org/10.1530/JME-18-0214

Downloads

Publicado

2023-08-21

Edição

Seção

Articles