Development and characterization of pla biofilament combined with perifiton biomass for 3d printing
Desenvolvimento e caracterização de biofilamento de PLA combinado a biomassa perifitica para impressão 3D
Palavras-chave:
Biofilament, PLA, Periphyton, 3D PrintingResumo
3D printing has conquered markets on an exponential scale. Allied to this, the global demand for environmentally sustainable materials drives research in the search for a substitute for petroleum-based thermoplastics. PLA is among the main raw materials for use in 3D printing filaments and has the advantage of being a bio-based and biodegradable biopolymer. This study aimed to develop a biofilament from a mixture of periphytic biomass and PLA and to evaluate its biodegradability potential when compared to commercial filaments. The biofilament was produced with 95% PLA and 5% periphytic biomass. Scanning Electron Microscopy and FTIR spectroscopy were applied to analyze the morphological structure of the biofilament. The biofilament presented mechanical performance similar to pure PLA, becoming slightly more rigid and brittle. In the biodegradability test, the sample produced with the biofilament showed a greater mass loss, with 63.75%, when compared to the PLA samples, indicating that the presence of microalgae contributed to the degradation of the material.
Downloads
Referências
American Society for Testing and Materials - ASTM. - D 638-14 (2014). Standard Test Method for Tensile Properties of Plastics. Annual Book of ASTM Standard.
American Society for Testing and Materials - ASTM. - D 790-03 (2003). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. Annual Book of ASTM Standard.
American Society for Testing and Materials – ASTM - G 160-03 (2003). Standard Practice for Evaluating Microbial Susceptibility of Nonmetallic Materials By Laboratory Soil Burial, Annual Book of ASTM Standard.
Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., & Iluz, D. (2021). Unconventional high-value products from microalgae: A review. Bioresource Technology, 329, 124895. https://doi.org/10.1016/j.biortech.2021.124895
Ahmed, J., & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging technology: a review. International journal of food properties, 14(1), 37-58. https://doi.org/10.1080/10942910903125284
Cao, Y., Zhang, N., Sun, J., & Li, W. (2019). Responses of periphyton on non-plant substrates to different macrophytes under various nitrogen concentrations: A mesocosm study. Aquatic Botany, 154, 53-59. https://doi.org/10.1016/j.aquabot.2019.01.003
Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J. G., & Thiede, S. (2015). Direct digital manufacturing: definition, evolution, and sustainability implications. Journal of Cleaner Production, 107, 615-625. https://doi.org/10.1016/j.jclepro.2015.05.009
Daver, F., Lee, K. P. M., Brandt, M., & Shanks, R. (2018). Cork–PLA composite filaments for fused deposition modelling. Composites Science and Technology, 168, 230-237. https://doi.org/10.1016/j.compscitech.2018.10.008
Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76-84. https://doi.org/10.1016/j.compositesa.2014.04.003.
Elsawy, M. A., Kim, K. H., Park, J. W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. https://doi.org/10.1016/j.rser.2017.05.143
Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., & Camino, G. (2009). Biodegradation of poly (lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94(10), 1646-1655. https://doi.org/10.1016/j.polymdegradstab.2009.07.001
Griffiths, C. A., Howarth, J., De Almeida-Rowbotham, G., Rees, A., & Kerton, R. (2016). A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing. Journal of cleaner production, 139, 74-85. https://doi.org/10.1016/j.jclepro.2016.07.182
Huang, J., Fan, J., Yuan, D., Zhang, S., & Chen, Y. (2020). Facile preparation of supertoughened polylactide-based thermoplastic vulcanizates without sacrificing the stiffness based on the selective distribution of silica. Industrial & Engineering Chemistry Research, 59(21), 9950-9958. https://doi.org/10.1021/acs.iecr.0c00035
Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Composites science and technology, 68(2), 424-432. https://doi.org/10.1016/j.compscitech.2007.06.022
Jeon, H. J., & Kim, M. N. (2013). Biodegradation of poly (L-lactide)(PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 85, 289-293. https://doi.org/10.1016/j.ibiod.2013.08.013
Kale, G., Auras, R., Singh, S. P., & Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer testing, 26(8), 1049-1061. https://doi.org/10.1016/j.polymertesting.2007.07.006
Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. Journal of Cleaner Production, 70, 90-96. https://doi.org/10.1016/j.jclepro.2014.02.009
Kodal, M., Wis, A. A., & Ozkoc, G. (2018). The mechanical, thermal and morphological properties of γ-irradiated PLA/TAIC and PLA/OvPOSS. Radiation Physics and Chemistry, 153, 214-225. https://doi.org/10.1016/j.radphyschem.2018.10.018
Kyutoku, H., Maeda, N., Sakamoto, H., Nishimura, H., & Yamada, K. (2019). Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydrate polymers, 203, 95-102. https://doi.org/10.1016/j.carbpol.2018.09.033
Laureto, J. J., & Pearce, J. M. (2017). Open source multi-head 3D printer for polymer-metal composite component manufacturing. Technologies, 5(2), 36. https://dx.doi.org/10.3390/technologies5020036
Lobo, E. A., Schuch, M., Heinrich, C. G., Da Costa, A. B., Düpont, A., Wetzel, C. E., & Ector, L. (2015). Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environmental monitoring and Assessment, 187(6), 1-13. https://doi.org/10.1007/s10661-015-4586-3
Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J. M., & Torre, L. (2015). Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer degradation and stability, 121, 105-115. https://doi.org/10.1016/j.polymdegradstab.2015.08.016
Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced drug delivery reviews, 107, 17-46. https://doi.org/10.1016/j.addr.2016.04.003
Murphy, C. A., & Collins, M. N. (2018). Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polymer Composites, 39(4), 1311-1320. https://doi.org/10.1002/pc.24069
Oksman, K., & Selin, J. F. (2004). Plastics and composites from polylactic acid. In Natural fibers, plastics and composites (pp. 149-165). Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9050-1_10
Peeters, B., Kiratli, N., & Semeijn, J. (2019). A barrier analysis for distributed recycling of 3D printing waste: Taking the maker movement perspective. Journal of Cleaner Production, 241, 118313. https://doi.org/10.1016/j.jclepro.2019.118313
Pinto, V. C., Ramos, T., Alves, A. S. F., Xavier, J., Tavares, P. J., Moreira, P. M. G. P., & Guedes, R. M. (2017). Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection. Engineering failure analysis, 71, 63-71. https://doi.org/10.1016/j.engfailanal.2016.06.009
Rech, F., Silva, S. M. D., Roldo, L., Oliveira, J. M., & Silva, F. P. (2021). Formulation and characterization of potential composites filaments from PLA and tobacco stems for application in additive manufacturing. Matéria (Rio de Janeiro), 26. https://doi.org/10.1590/S1517-707620210002.1288
Rudnik, E., & Briassoulis, D. (2011). Degradation behaviour of poly (lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Industrial Crops and Products, 33(3), 648-658. https://doi.org/10.1016/j.indcrop.2010.12.031
Silva, A. L. E.; Moraes, J. A. R.; Benitez, L. B.; Homrich, A. J. O. (2020). Sustentabilidade ambiental da impressão 3D por FDM. In. XL Encontro Nacional De Engenharia De Produção, Anais XL Encontro Nacional De Engenharia De Produção, Abepro, Foz Do Iguaçu.
Silva, A. L. E., Moraes, J. A. R., Benitez, L. B., Kaufmann, E. A., & Furstenau, L. B. (2020). Mapeamento da produção científica acerca do uso de biocompósitos nos processos de impressões 3D. Revista Ibero-Americana de Ciências Ambientais, 11(1), 236-250. http://doi.org/10.6008/CBPC2179-6858.2020.001.0022
de Souza, M. P., Rizzetti, T. M., Hoeltz, M., Dahmer, M., Júnior, J. A., Alves, G., ... & Schneider, R. (2020). Bioproducts characterization of residual periphytic biomass produced in an algal turf scrubber (ATS) bioremediation system. Water Science and Technology, 82(6), 1247-1259. https://doi.org/10.2166/wst.2020.343
Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource technology, 304, 122997. https://doi.org/10.1016/j.biortech.2020.122997
Tran, T. N., Bayer, I. S., Heredia‐Guerrero, J. A., Frugone, M., Lagomarsino, M., Maggio, F., & Athanassiou, A. (2017). Cocoa shell waste biofilaments for 3D printing applications. Macromolecular Materials and Engineering, 302(11), 1700219. https://doi.org/10.1002/mame.201700219
Tourlouki, K., Tsavatopoulou, V., Alexandropoulos, D., Manariotis, I. D., & Mazzucato, S. (2020, June). A Novel Microalgae Harvesting Method Using Laser Micromachined Glass Fiber Reinforced Polymers. In Photonics (Vol. 7, No. 2, p. 42). MDPI. https://doi.org/10.3390/photonics7020042
Turco, R., Zannini, D., Mallardo, S., Dal Poggetto, G., Tesser, R., Santagata, G., ... & Di Serio, M. (2021). Biocomposites based on Poly (lactic acid), Cynara Cardunculus seed oil and fibrous presscake: A novel eco-friendly approach to hasten PLA biodegradation in common soil. Polymer Degradation and Stability, 188, 109576. https://doi.org/10.1016/j.polymdegradstab.2021.109576
Weng, Y. X., Wang, L., Zhang, M., Wang, X. L., & Wang, Y. Z. (2013). Biodegradation behavior of P (3HB, 4HB)/PLA blends in real soil environments. Polymer testing, 32(1), 60-70. https://doi.org/10.1016/j.polymertesting.2012.09.014
Wong, K. V., & Hernandez, A. (2012) A Review of Additive Manufacturing, International Scholarly Research Network, ISRN Mechanical Engineering. https://doi.org/10.5402/2012/208760