Challenges and strategies for reducing enteric methane emissions in sustainable animal production
Desafios e estratégias para a redução das emissões de metano entérico na produção animal sustentável
Palavras-chave:
Climate change, Concentrate, Forage, Management, RuminantResumo
Methane emissions in ruminants are influenced by various factors, including feed type and rumen microbial population. Mitigation strategies involve nutritional interventions, soil and plant management, and synergistic use of different forages. Effective management practices in pasture-based systems, such as monitoring forage mass and adjusting stocking rates, optimize intake and forage quality, resulting in reduced emissions and improved sustainability. Dry matter intake, diet profile, and quality significantly impact methane production, and interactions between microorganisms and ruminal ecology also influence emissions. While more efficient animals with lower feed intake may not necessarily emit less methane, understanding the differences in methanogenic profiles between efficient and inefficient animals is crucial and requires further investigation. Animal genotype is another factor influencing emissions. Comprehensive research considering diet, production, and farming systems is needed to develop effective strategies and achieve significant methane emission reductions
Downloads
Referências
AGUERRE, M.J.; WATTIAUX, M.A.; POWELL, J.M.; BRODERICK, G.A.; ARNDT, C. Effect of forage-to-concentrate ratio in dairy cow diets in emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science, v. 94, p. 3081–3093, 2011.
ARCE-RECINOS, C.; ROBERTOS, N.F.O.; HERRERA, R.A.G.; JUAREZ, J.A.R.; VÁZQUEZ, Á.T.P.; SOLÍS, J.R.C.; SANCHEZ, L.E.C.; LUGO, F.C.; PÉREZ, E.V.B.; CHAY-CANUL, A.J. Residual feed intake and rumen metabolism in growing pelibuey sheep. Animals, v. 12, p. 572, 2022.
ARCHIMÈDE, H.; EUGÈNE, M.; MARIE MAGDELEINE, C.; BOVAL, M.; MARTIN, C.; MORGAVI, D.P.; LECOMTE, P.; DOREAU, M. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, v. 166-167, p. 59–64, 2011.
AUFFRET, M.D.; STEWART, R.; DEWHURST, R.J.; DUTHIE, C.A.; ROOKE, J.A.; WALLACE, R.J.; FREEMAN, T.C.; SNELLING, T.J.; WATSON, M.; ROEHE, R. Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos taurus breeds and basal diets. Frontiers in Microbiology, v. 8, 2642, 2018.
BASARAB, J.A.; BEAUCHEMIN, K.A.; BARON, V.S.; OMINSKI, K.H.; GUAN, L.L.; MILLER, S.P.; CROWLEY, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal, v.7, p.303–315, 2013.
BEAUCHEMIN, K.A.; McGINN, S.M. Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Canadian Journal Animal Science, v.86, p.401-408, 2006.
BEAUCHEMIN, K.A.; McGINN, S.M. Methane emissions from feedlot cattle fed barley or corn diets. Journal Animal Science, v.83, p.653-661, 2005.
BENCHAAR, C.; POMAR, C.; CHIQUETTE, J. Evaluation of dietary strategies to reduce methane production in ruminants: a modeling approach. Canadian Journal of Animal Science, v.81, n.4, p.563-574, 2001.
BERHANU, Y.; OLAV, L.; NURFETA, A.; ANGASSA, A.; AUNE, J.B. Methane emission from ruminant livestock in Ethiopia: promising forage species to reduce CH4 emissions. Agriculture, v. 9, p. 130, 2019.
BODDEY, R.M.; CASAGRANDE, D.R.; HOMEM, B.G.C.; ALVES, B.J.R. Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass and Forage Science, v. 75, p. 357-371, 2020.
CARBERRY, C.A.; KENNY, D.A.; HAN, S.; MCCABE, M.S.; WATERS, S.M. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Applied and Environmental Microbiology, v. 78, n. 14, p. 4949-4958, 2012.
COLE, N.A.; MEYER, B.E.; PARKER, D.B.; NEED, J.; TURNER, K.E.; NORTHUP, B.K.; JENNINGS, T.; JENNINGS, J.S. Effects of diet quality on energy metabolism and methane production by beef steers fed a warm-season grass-based hay diet. Applied Animal Science, v. 36, p. 652-667, 2020.
CONGIO, G.F.S.; BANNINK, A.; MOGOLLÓN, O.L.M. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America ans Caribbean region: A meta-analysis. Journal of Cleaner Production, v. 312, 127693, 2021.
COTTLE, D.J.; VELAZCO, J.; HEGARTY, R.S.; MAYER, D.G. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements. Animal, v. 9, n. 12, p. 1949-1957, 2015.
DENNINGER, T.M.; SCHWARM, A.; BIRKINSHAW, A.; TERRANOVA, M.; DOHME-MEIER, F.; MÜNGER, A.; EGGERSCHWILER, L.; BAPST, B.; WERGMANN, S.; CLAUSS, M.; KREUZER, M. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Animal Feed Science and Technology, v. 261, 114388, 2020.
DeRAMUS, H.A.; CLEMENT, T.C.; GIAMPOLA, D.D.; DICKISON, P.C. Methane emissions of beef cattle on forages. Journal of Environment Quality, v. 32, n. 1, p. 269-277, 2003.
FAO - Food and Agriculture Organization of the United Nations, FAOSTAT: Climate Change: Agrifood systems emissions, CC BY-NC-SA 3.0 IGO, Acessível em https://www.fao.org/faostat/en/#data/GT. Acesso em 07/06/2023
FLAY, H.E.; KUHN-SHERLOCK, B.; MACDONALD, K.A.; CAMARA, M.; LOPEZ-VILLALOBOS, N.; DONAGHY, D.J.; ROCHE, J.R. Hot topic: selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield. Journal of Dairy Science, v. 102, p. 2708-2713, 2019.
GRAINGER C.; CLARKE, T.; MCGINN, S.M.; AULDIST, M.J.; BEAUCHEMIN, K.A.; HANNAH, M.C.; WAGHORN, G.C.; CLARK, H.; ECKARD, R.J. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. Journal of Dairy Science, v. 90, p. 2755–2766, 2007.
GUAN, L.L.; NKRUMAH, J.D.; BASARAB, J.A.; MOORE, S.S. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters, v. 288, p. 85-91, 2008.
HAMMOND, K. J.; PACHECO, D.; BURKE, J. L.; KOOLAARD, J. P.; MUETZEL, S.; WAGHORN, G. C. The effects of fresh forages and feed intake level on digesta kinetics and enteric methane emissions from sheep. Animal Feed Science and Technology, v. 193, p. 32–43, 2014.
HAMMOND, K.J.; BURKE, J.L.; KOOLAARD, J.P.; MUETZEK, S.; PINARES-PATIÑO, C.S.; WAGHORN, G.C. Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Animal Feed Science and Technology, v. 179, p. 121-132, 2013.
HANSEN, N.P.; KRISTENSEN, T.; JOHANSEN, M.; WIKING, L.; POULSEN, N.A.; HELLWING, A.L.F.; FOLDAGER, L.; JENSEN, S.K.; LARSEN, L.B.; WEISBJERG, M.R. Effects on feed intake, milk production, and methane emission in dairy cows fed silage or grass with concentrate or fresh grass harvested at early or late maturity stage without concentrate. Journal of Dairy Science, v. 105, p. 8036-8053, 2022.
HENDERSON, G.; COX, F.; GANESH, S.; JONKER, A.; YOUNG, W.; JANSSEN, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, v. 5, 14567, 2015.
HINDRICHSEN, I.K.; WETTSTEIN, H.R.; MACHMÜLLER, A.; Kreuzer, M. Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture, Ecosystems & Environment, v. 113, p. 150–161, 2006.
JAFARI, S.; EBRAHIMI, M.; GOH, Y.M.; RAJION, M.A.; JAHROMI, M.F.; AL-JUMAILI, W. S. Manipulation of rumen fermentation and methane gas production by plant secondary metabolites (saponin, tannin and essential oil)–a review of ten-year studies. Annals of Animal Science, v. 19, p. 3-29, 2019.
JAMI, E.; WHITE, B.A.; MIZRAHI, I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. Plos One, v. 9, 85423, 2014.
JAYASINGHE, P.; RAMILAN, T.; DONAGHY, D.J.; PEMBLETON, K.G.; BARBER, D.G. Comparison of nutritive values of tropical pasture species grown in different environments, and implications for livestock methane production: A meta-analysis. Animals, v. 12, 1806, 2022.
JEYANATHAN, J.; MARTIN, C.; EUGÈNE, M.; FERLAY, A.; POPOVA, M.; MORGAVI, D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. Journal of Animal Science and Biotechnology, v.10, 41, 2019.
JIAO, H.P.; DALE, A.J.; CARSON, A.F.; MURRAY, S.; GORDON, A.W.; FERRIS, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. Journal of Dairy Science, v. 97, n.11, p. 7043–7053, 2014.
JOHNSON, K.A.; JOHNSON, D.E. Methane emissions from cattle. Journal of Animal Science, v. 73, n. 8, p. 2483-2492, 1995.
KUMAR, S.; PUNIYA, A.K.; PUNIYA, M.; DAGAR, S.S.; SIROHI, S.K.; SINGH, K.; GRIFFITH, G.W. Factors affecting rumen methanogens and methane mitigation strategies. World Journal of Microbiology and Biotechnology, v.25, n.9, p.1557-1566, 2009.
KURIHARA, M.; MAGNER, T.; McCRABB, H.; McCRABB, G. Methane production and energy partition of cattle in the tropics. British Journal of Nutrition, v. 81, p. 227-234, 1999.
LASSEY, K.R. Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agricultural and Forest Meteorology, v. 142, p. 120–132, 2007.
MACHADO, J.M.; MOTTA, E.A.M.; BARBOSA, M.R.; WEILER, R.L.; MILLS, A.; ONGARATTO, F.; MAIDANA, F.M.; MONTAGNER, P.; RODRIGUES, D.P.A.; SILVEIRA, D.C. Strategies to mitigate the emission of methane in pastures: enteric methane: a review. Australian Journal of Crop Science, v. 16, p. 682-690, 2022.
MALIK, P.K.; TRIVEDI, S.; MOHAPATRA, A.; KOLTE, A.P.; SEJIAN, V.; BHATTA, R.; RAHMAN, H. Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet. Plos One, v. 16, 0256048, 2021.
MANAFIAZAR, G.; BARON, V.S.; MCKEOWN, L.; BLOCK, H.C.; OMINSKI, K.; PLASTOW, G.; BASARAB, J.A. Methane and carbon dioxide emissions from yearling beef heifers and mature cows classified for residual feed intake under drylot conditions. Canadian Journal of Animal Science, v. 100, p. 522-535, 2020.
MARTUSCELLO, J.A.; OLIVEIRA, A.B.; CUNHA, D.N.F.V.; AMORIN, P.L.; DANTAS, P.A.L.; LIMA, D.A. Produção de biomassa e morfogênese do capim-braquiária cultivado sob doses de nitrogênio ou consorciado com leguminosas. Revista Brasileira de Saúde e Produção Animal, v. 12, n. 4, p. 923-934, 2011.
McALLISTER, T.A.; OKINE, E.K.; MATHISON, G.W.; CHENG, K.J. Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, v. 76, p. 231-243, 1996.
McDONNELL, R.P.; HART, K.J.; BOLAND, T.M.; KELLY, A.K.; McGEE, M.; KENNY, D.A. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. Journal of Animal Science, v. 94, p. 1179–1193, 2016.
McGOVER E.; McGEE, M.; BYRNE, C.J.; KENNY, D.A.; KELLY, A.K.; WATERS, S.M. Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed. Scientific Reports, v. 10, p. 1–10, 2010.
MÉO-FILHO, P.; BERNDT, A.; MARCONDES, C.R.; PEDROSO, A.F.; SAKAMOTO, L.S.; BOAS, D.F.V.; RODRIGUES, P.H.M.; RIVERO, M.J.; BUENO, I.C.S. Methane Emissions, Performance and Carcass Characteristics of Different Lines of Beef Steers Reared on Pasture and Finished in Feedlot. Animals, v. 10, n. 2, p. 303-318, 2020.
MOATE, P.J.; DEIGHTON, M.H.; JACOBS, J.; RIBAUX, B.E.; MORRIS, G.L.; HANNAH, M.C.; MAPLESON, D.; ISLAM, M.S.; WALES, W.J.; WILLIAMS, S.R.O. Influence of proportion of wheat in a pasture-based diet on milk yield, methane emission, methane yield, and ruminal protozoa of dairy cows. Journal of Dairy Science, v. 103, p. 2373-2386, 2020.
MOISSL-EICHINGER, C.; PAUSAN, M.; TAFFNER, J.; BERG, G.; BANG, C.; SCHMITZ, R.A. Archaea are interactive components of complex microbiomes. Trends in Microbiology, v. 26, p. 70-85, 2018.
MUÑOZ, C.; SÁNCHEZ, R.; PERALTA, A.M.T.; ESPÍNDOLA, S.; YAN, T.; MORALES, R.; UNGERFELD, E.M. Effects of feeding unprocessed oilseeds on methane emission, nitrogen utilization efficiency and milk fatty acid profile of lactating dairy cows. Animal Feed Science and Technology, v. 249, p. 18-30, 2019.
OH, J.; HARPER, M.; MELGAR, A.; COMPART, D.M.P.; Hristov, A.N. Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows. Journal of Dairy Science, v. 102. n. 7, p. 6065-6075, 2019.
OLIVEIRA, L.F.; RUGGIERI, A.C.; BRANCO, R.H.; COTA, O.L.; CANESIN, R.C.; COSTA, H.J.U.; MERCADANTE, M.E.Z. Feed efficiency and enteric methane production of Nellore cattle in the feedlot and on pasture. Animal Production Science, v. 58, p. 886–893, 2018.
ORZUNA-ORZUNA, J.F.; DORANTES-ITURBIDE, G.; LARA-BUENO, A.; MENDOZA-MARTÍNEZ, G.D.; MIRANDA-ROMERO, L.A.; HERNÁNDEZ-GARCÍA, P.A. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: a meta-analysis. Sustainability, v. 13, n. 13, 7410, 2021.
PEDREIRA, M.S.; PRIMAVESI, O.; LIMA, M.A.; FRIGHETTO, R.; OLIVEIRA, S.G.; BERCHIELLI, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Scientia Agricola, v. 66, n. 6, p. 742-750, 2009.
PEREIRA, A.M.; DAPKEVICIUS, M.L.N.E.; Borba, A.E.S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Animal Microbiome, v. 4, p. 1-12, 2022.
PRIMAVESI, O.; FRIGHETTO, R.T.S.; PEDREIRA, M.S.; LIMA, M.A.; BERCHIELLI, T.T.; BARBOSA, P.F. Metano entérico de bovinos leiteiros em condições tropicais brasileiras. Pesquisa Agropecuária Brasileira, v. 39, p. 277-283, 2004.
REBELO, L. R.; LUNA, I. C.; MESSANA, J. D.; ARAUJO, R. C.; SIMIONI, T. A.; GRANJA-SALCEDO, Y. T.; VITO, E.S.; LEE, C.; TEIXEIRA, I.A.M.A.; ROOKE, J.A.; BERCHIELLI, T. T. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Animal Feed Science and Technology, v. 257, p. 114293, 2019.
RIBEIRO, O. L.; CECATO, U.; IWAMOTO, B. S.; PINHEIRO, A.; JOBIM, C. C.; DAMAXCENO, J. C. Desempenho de bovinos em capim-tanzânia adubado com nitrogênio ou consorciado com estilosante. Revista Brasileira de Saúde e Produção Animal, v. 12, n. 1, p. 275-285, 2011.
ROSSI, F.; VECCHIA, P.; MASOERO, F. Estimate of methane production from rumen fermentation. Nutrient Cycling in Agroecosystems, v. 60, p. 89–92, 2001.
RUGGIERI, A.C.; CARDOSO, A.S.; ONGARATTO, F.; CASAGRANDE, D.R.; BARBERO, R.P.; BRITO, L.F.; AZENHA, M.V.; OLIVEIRA, A.A.; KOSCHECK, J.F.W.; REIS, R.A. Grazing intensity impacts on herbage mass, sward structure, greenhouse gas emissions, and animal performance: analysis of Brachiaria pastureland. Agronomy, v. 10, 1750, 2020.
SAUVANT, D.; GIGER-REVERDIN, S. Empirical modelling by meta-analysis of digestive interactions and CH4 production in ruminants. Publication-European Association for Animal Production, v. 124, p. 561, 2007.
SHABAT, S.K.B.; SASSON, G.; DORON-FAIGENBOIM, A.; DURMAN, T.; YAABOBY, S.; MILLER, M.E.B.; WHITE, B.A.; SHTERZER, N.; MIZRAHI, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. The ISME Journal, v. 10, p. 2958-2972, 2016.
SOUZA FILHO, W.; NUNES, P.A.A.; BARRO, R.S.; KUNRATH, T.R.; ALMEIDA, G.M.; GENRO, T.C.M.; BAYER, C.; CARVALHO, P.C.F. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between impacts. Journal of Cleaner Production, v. 213, p. 968-975, 2019.
SUBEPANG, S.; SUZUKI, T.; PHONBUMRUNG, T.; SOMMART, K. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australasian Journal of Animal Science, v. 32, p. 548‐555, 2019.
SUN, X.; CHENG, L.; JONKER, A.; MUNIDASA, S.; PACHECO, D. A review: plant carbohydrate types – the potential impact on ruminant methane emissions. Frontiers in Veterinary Science, v. 9, 880115, 2022.
ULYATT, M.J.; LASSEY, K.R.; SHELTON, I.D.; WALKER, C.F. Methane emission from dairy cows and wether sheep fed subtropical grass‐dominant pastures in midsummer in New Zealand. New Zealand Journal of Agricultural Research, v. 45, p. 227–234, 2002.
VELAZCO, J. I.; COTTLE, D.J.; HEGARTY, R.S. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Animal Production Science, v. 54, p. 1737-1740, 2014.
WANG, K.; XIONG, B.; ZHAO, X. Could propionate formation be used to reduced enteric methane emission in ruminants? Science of The Total Environment, v. 855, 158867, 2023.
XIE, Y.; SUN, H.; XUE, M.; LIU, J. Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake. Animal Microbiome, v. 4, p. 1-12, 2022.
YAN, T.; AGNEW, R.E.; GORDON, F.J.; PORTER, M.G. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, v. 64, p. 253-263, 2000.
YAN, T.; MAYNE, C.S.; GORDON, F.G.; PORTER, M.G.; AGNEW, R.E.; PATTERSON, D.C.; FERRIS, C.P.; KILPATRICK, D.J. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. Journal Dairy Science, v. 93, p. 2630–2638, 2010.
ZHOU, M.; HERNANDEZ-SANABRIA, E.; GUAN, L.L. Assessment of microbial ecology of ruminal methane producers and cattle’s high feed efficiency and low methane production activities. Applied Environmental Microbiology, v. 75, p. 6524–6533, 2009.
ZHOU, R.; WU, J.; LANG, X.; LIU, L.; CASPER, D.P.; WANG, C.; ZHANG, l.; WEI, S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, v. 103, p. 2303-2314, 2020.
ZUBIETA, Á.S.; SAVIAN, J.V.; SOUZA FILHO, W.; WALLAU, M.O.; GÓMEZ, A.M.; BINDELLE, J.; BONNET, O.J.F.; CARVALHO, P.C.F. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Science of the Total Environment, v. 754, 142029, 2021.