Exploratory analysis of a real wind turbine dataset, using AI tools to cluster and classify data, for condition monitoring and fault detection
Análise exploratória de um conjunto de dados de turbina eólica real, usando ferramentas de IA para agrupar e classificar dados, para monitoramento de condições e detecção de falhas
Palavras-chave:
Wind turbine, Maintenance, Fault detection, Cluster, Multilayer perceptronResumo
In recent years there has been an increase in wind generation, driven by environmental factors and the incentive offered for the development of clean and sustainable technologies for energy generation. However, due to the rapid growth of this technology, concerns about the safety and reliability of wind turbines are increasing, especially due to the associated risks and financial costs. Therefore, health monitoring and fault detection for wind turbines has become an important research focus. Thus, the objective of this work was to realize an exploratory study of real data from a wind turbine, using AI tools that help to group the different behaviors, according to the similarity of resources and characteristics of the data. For this, unsupervised learning methods were used to cluster the data and a model was proposed to train and test, using a multilayer perceptron network, to classify these clusters. The differential of this work is the use of real data from CHESF's wind turbines. Another important contribution is in relation to permanent magnet wind turbines, as there are not many studies in this field, therefore a great potential to be explored.
Downloads
Referências
Artigao, E., Martín-Martínez, S., Honrubia-Escribano, A., & Gómez-Lázaro, E. (2018). Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Applied Energy, 228, 1569–1583. doi:10.1016/j.apenergy.2018.07.037.
Barbosa, N. B., Nunes, D. D. G., Santos, A. A. B., & Machado, B. A. S. (2023). Technological Advances on Fault Diagnosis in Wind Turbines: A Patent Analysis. Appl. Sci., 13, 1721. doi:10.3390/ app13031721.
Bashir, M., & Bashir, A. (2022). Principle Parameters and Environmental Impacts that Affect the Performance of Wind Turbine: An Overview. Arab. J. Sci. Eng., 47, 7891–7909. doi:10.1007/s13369-021-06357-1.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39 (1), 1–22. doi:10.1111/j.2517-6161.1977.tb01600.x.
El-Menshawy, A., Gul, Z., & El-Thalji, I. (2021). Azure machine learning studio and SCADA data for failure detection and prediction purposes: A case of wind turbine generator. IOP Conf. Ser. : Mater. Sci. Eng., 1201, 012086. doi:10.1088/1757-899X/1201/1/012086.
Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110, 104743. doi:10.1016/j.engappai.2022.104743.
Frank, E., & Others. (2016). The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques. Fourth Edition: Morgan Kaufmann.
Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed.: CA 95472: O’Reilly.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11 (1), 10--18. doi:10.1145/1656274.1656278.
Hsu, J.-Y., Wang, Y.-F., Lin, K.-C., Chen, M.-Y., & Hsu, J. H.-Y. (2020). Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning. IEEE Access, 8, 23427–23439. doi:10.1109/ACCESS.2020.2968615.
Lloyd, S. P. (1957). Least squares quantization in PCM. IEEE Transactions on Information Theory. IEEE Transactions on Information Theory, 28 (2), 129--137. doi:10.1109/TIT.1982.1056489.
MacQUEEN, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1. University of California Press, 281--297.
Mishnaevsky, L., & Thomsen, K. (2020). Costs of repair of wind turbine blades: Influence of technology aspects. Wind Energy, 23, 2247--2255. doi:10.1002/WE.2552.
Pachauri, R. K., & Meyer, L. A. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: Geneva, Switzerland.
Pryor, S. C., Barthelmie, M. S., R. J. and Bukovsky, & others. (2020). Climate change impacts on wind power generation. Nat Rev Earth Environ 1, 627–643. doi:10.1038/s43017-020-0101-7.
Reder, M., Yürüşen, N. Y., & Melero., J. J. (2018). Data-driven learning framework for associating weather conditions and wind turbine failures. Reliability Engineering & System Safety, 169, 554–569. doi:10.1016/j.ress.2017.10.004.
Turnbull, A., Carroll, J., McDonald, A., & Koukoura, S. (2019). Prediction of wind turbine generator failure using two-stage cluster-classification methodology. Wind Energy, 1–10. doi:10.1002/we.2391.
Wang, W., Xue, Y., He, C., & Zhao, Y. (2022). Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies, 15, 5672.
Xiao, C., Liu, T., Z. adn Zhang, & Zhang, X. (2021). Deep Learning Method for Fault Detection of Wind Turbine Converter. Appl. Sci., 11, 1280. doi:10.3390/app11031280.
Zhao, H., Gao, Y., Liu, H., & Others. (2019). Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine. J. Mod. Power Syst. Clean Energy, 7, 350--356. doi:10.1007/s40565-018-0402-8.