Chemical constituents and cytotoxic activity of Eugenia involucrata DC. infusion

Constituintes químicos e atividade citotóxica da infusão de Eugenia involucrata DC.

Autores

  • Ionete Barzotto Universidade Estadual do Oeste do Paraná
  • Simone Oliveira Universidade Estadual do Oeste do Paraná https://orcid.org/0000-0003-2136-632X
  • Newton Soares Silva Universidade Estadual Paulista
  • Rafaela Almeida MS Bioscience
  • Eduardo Pilau Universidade Estadual de Maringá
  • Matheus Delabeneta Universidade Estadual do Oeste do Paraná
  • Lúcia Vieira Universidade do Vale do Paraíba

Resumo

In this work, the chemical constituents of the infusion from the leaves of Eugenia involucrata DC. (Myrtaceae) were elucidated using ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-MS/MS), as well as Fourier transform infrared spectroscopy (FTIR). The toxicity of the infusion was evaluated using the brine shrimp (Artemia salina) lethality test. Nineteen chemical compounds were identified by UHPLC-MS/MS: gallic acid; quinic acid; epicatechin; gallocatechin; (epi)afzelechin-(epi)catechin; quercetin-3-O-rhamnoside (quercitrin); citric acid; tryptophan; aconitic acid; (-)-epicatechin-(4β→8)-(-)-epicatechin (procyanidin B2); rutin; quercetin-3-O-glucoside; naringenin-7-O-glucoside (prunin); coumaric acid; azelaic acid; quercetin; naringenin; kaempferol-3-O-glucoside (astragalin). FTIR analysis revealed bands attributed to phenols and alcohols, alkanes and carboxylic acids, flavonoids and polyphenols, aromatic compounds, and aliphatic amines. According to the results, the infusion of E. involucrata DC. demonstrated atoxicity and contained chemical components that could be useful in the development of new therapeutic or herbal agents.

Downloads

Não há dados estatísticos.

Referências

Alonso-Castro, A. J., Domínguez, F., & García-Carrancá, A. (2013). Rutin Exerts Antitumor Effects on Nude Mice Bearing SW480 Tumor. Archives of Medical Research, 44(5), 346–351. https://doi.org/10.1016/j.arcmed.2013.06.002

Aras, A., Bursal, E., & Dogru, M. (2016). UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae. Journal of Applied Pharmaceutical Science, 009-013. https://doi.org/10.7324/japs.2016.601102

Arcanjo, DDR., Albuquerque, ACM., Melo-Neto, B., Santana, LCLR., Medeiros, M., & Citó, AMGL. (2012). Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Brazilian Journal of Biology, 72(3), 505–509. https://doi.org/10.1590/s1519-69842012000300013

Arthurs, C. L., Lingley, K. F., Piacenti, M., Stratford, I. J., Tatic, T., Whitehead, R. C., & Wind, N. S. (2008). (−)-Quinic acid: a versatile precursor for the synthesis of analogues of 2-crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone (COTC) which possess anti-tumour properties. Tetrahedron Letters, 49(15), 2410–2413.

https://doi.org/10.1016/j.tetlet.2008.02.059

Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256–265. https://doi.org/10.1089/mdr.2012.0244

Braicu, C., Ladomery, M. R., Chedea, V. S., Irimie, A., & Berindan-Neagoe, I. (2013). The relationship between the structure and biological actions of green tea catechins. Food Chemistry, 141(3), 3282–3289. https://doi.org/10.1016/j.foodchem.2013.05.122

Breathnach, A.S. (1999). Azelaic acid: potential as a general antitumoural agent. Medical Hypotheses, 52(3), 221–226. https://doi.org/10.1054/mehy.1997.0647

Chen, Q., Li, P., Li, P., Xu, Y., Li, Y., & Tang, B. (2014). Isoquercitrin inhibits the progression of pancreatic cancer in vivo and in vitro by regulating opioid receptors and the mitogen-activated protein kinase signalling pathway. Oncology Reports, 33(2), 840–848. https://doi.org/10.3892/or.2014.3626

Cincin Z.B., Unlu, M, Kiran B., Bireller, E.S., Baran, Y., & Cakmakoglu, B. (2014). Molecular Mechanisms of Quercitrin-induced Apoptosis in Non-small Cell Lung Cancer. Archives of Medical Research, 45(6), 445–454.

https://doi.org/10.1016/j.arcmed.2014.08.002

Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. 1-23. https://doi.org/10.1002/9780470027318.a5606

Couto, A. G., Kassuya, C. A. L., Calixto, J. B., Petrovick, P.R. (2013). Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant. Brazilian Journal of Pharmacognosy, 23(1), 124–131. https://doi.org/10.1590/S0102-695X2012005000133

Crozier, A., Jaganath, I. B., & Clifford, M. N. Phenols, Polyphenols and Tannins: An Overview. Plant Secondary Metabolites, Blackwell: Oxford, UK, 1–24.

https://doi.org/10.1002/9780470988558.ch1

Deepti, K., Amperayani, K. R., Yarla, N. S. & Parimi. U. D. (2017). In vitro Cytotoxic and Genotoxic Evaluation of Morinda tinctoria Roxb. Leaf Extracts. Pharmaceutical Chemistry Journal, 51(4), 295–300.

https://doi.org/10.1007/s11094-017-1602-7

Dutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4–29. https://doi.org/10.1016/j.phrs.2016.01.021

Feng, L., Jia, X., Zhu, M.-M., Chen, Y., & Shi, F. (2010). Antioxidant Activities of Total Phenols of Prunella vulgaris L. in vitro and in Tumor-bearing Mice. Molecules, 15(12), 9145–9156. https://doi.org/10.3390/molecules15129145

Fernández-Arroyo, S., Camps, J., Menendez, J., & Joven, J. (2015). Managing Hypertension by Polyphenols. Planta Medica, 81(08), 624–629. https://doi.org/10.1055/s-0034-1396310

Forsythe, I. J., Wishart, D. S., (2009). Exploring human metabolites using the human metabolome database. Current Protocols in Bioinformatics, Ch. 25, Unit 14.8.

https://doi.org/10.1002/0471250953.bi1408s25

Galvez, J., Zarzuelo, A., Crespo, M., Lorente, M., Ocete, M., & Jiménez, J. (1993). Antidiarrhoeic Activity of Euphorbia hirta extract and isolation of an active flavonoid constituent. Planta Medica, 59(04), 333–336. https://doi.org/10.1055/s-2006-959694

Gani, A., Wani., S. M. & Masoodi, F.A. (2012). Whole-Grain Cereal Bioactive Compounds and Their Health Benefits: A Review. Journal of Food Processing & Technology, 03(03), 1-10. https://doi.org/10.4172/2157-7110.1000146

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., & Devarajan, T. (2014). Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.). Evidence-Based Complementary and Alternative Medicine, 2014, 1–8. https://doi.org/10.1155/2014/873803

Gonçalves, R. N., Gonçalves, J. R. S., M. C. M., Buffon, Negrelle, R. R. B. (2017). Medicinal Plants: Linking Popular and Scientific Knowledge in Primary Health Care. Visão Acadêmica, 18(04), 25–65.

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬Ham, Y. M., Yoon, W. J., Park, S. Y., Song, G. G.. Jung, Y. H., Jeon, Y. J., Kang, S. M., & Kim, K. N. (2012). Quercitrin protects against oxidative stress-induced injury in lung fibroblast cells via up-regulation of BCL-XL. Journal of Functional Foods, 4(1), 253–262. https://doi.org/10.1016/j.jff.2011.12.001

Hasan, S., Ahmed, M. I., Mondal, S., Masud, M.M., Sadhu, S. K., Ishibashi, M., Uddin, S. J. (2006). Antioxidant, antinociceptive activity and general toxicity study of Dendrophthoe falcata and isolation of quercitrin as the major component. Oriental Pharmacy and Experimental Medicine, 6(4), 355–360. https://doi.org/10.3742/opem.2006.6.4.355

Hernández-Aquino, E., & Muriel, P. (2018). Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World Journal of Gastroenterology, 24(16), 1679–1707. https://doi.org/10.3748/wjg.v24.i16.1679

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., & Akimoto, N. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. https://doi.org/10.1002/jms.1777

Inbathamizh, L., & Padmini, E. (2013). Quinic acid as a potent drug candidate for prostate cancer – A comparative pharmacokinetic approach. Asian Journal of Pharmaceutical and Clinical Research, 6(4), 106–112.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.884.8888&rep=rep1&type=pdf

Ito, H., Kobayashi, E., Li, S.-H., Hatano, T., Sugita, D., Kubo, N., Shimura, S., Itoh, Y., Tokuda, H., Nishino, H., & Yoshida, T. (2002). Antitumor Activity of Compounds Isolated from Leaves of Eriobotrya japonica. Journal of Agricultural and Food Chemistry, 50(8), 2400–2403. https://doi.org/10.1021/jf011083l

Jung, J., Bae, K., & Choon Sik Jeong. (2013). Anti-Helicobacter pylori and Antiulcerogenic Activities of the Root Cortex of Paeonia suffruticosa. Biological and Pharmaceutical Bulletin, 36(10), 1535–1539. https://doi.org/10.1248/bpb.b13-00225

Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., & Tajmir-Riahi, H. A. (2006). Antioxidant flavonoids bind human serum albumin. Journal of Molecular Structure, 798(1-3), 69–74. https://doi.org/10.1016/j.molstruc.2006.03.051

Kanno, S., Tomizawa, A., Hiura, T., Osanai, Y., Shouji, A., Ujibe, M., Ohtake, T., Kimura, K., & Ishikawa, M. (2005). Inhibitory Effects of Naringenin on Tumor Growth in Human Cancer Cell Lines and Sarcoma S-180-Implanted Mice. Biological and Pharmaceutical Bulletin, 28(3), 527–530. https://doi.org/10.1248/bpb.28.527

Kisseih, E., Lechtenberg, M., Petereit, F., Sendker, J., Zacharski, D., Brandt, S., Agyare, C., & Hensel, A. (2015). Phytochemical characterization and in vitro wound healing activity of leaf extracts from Combretum mucronatum Schum. & Thonn.: Oligomeric procyanidins as strong inductors of cellular differentiation. Journal of Ethnopharmacology, 174, 628–636. https://doi.org/10.1016/j.jep.2015.06.008

Knop, S., Thomas, Lindner, J., & Vöhringer, P. (2011). On the nature of OH-stretching vibrations in hydrogen-bonded chains: Pump frequency dependent vibrational lifetime. Physical Chemistry Chemical Physics, 13(10), 4641–4641.

https://doi.org/10.1039/c0cp02143a

Kratz, J. M., Carla Regina Andrighetti-Fröhner, Deise Juliana Kolling, Paulo, Claudio Cesar Cirne-Santos, Yunes, R. A., Ricardo José Nunes, Trybala, E., Bergström, T., Izabel C.P.P. Frugulhetti, Monte, R., & Oliveira, M. (2008). Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Memórias Do Instituto Oswaldo Cruz, 103(5), 437–442. https://doi.org/10.1590/s0074-02762008000500005

Lagarto Parra, A. (2001). Comparative study of the assay of and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8(5), 395–400. https://doi.org/10.1078/0944-7113-00044

Lin, H., Wu, Y., Chen, J., Huang, S., & Wang, Y. (2018). (−)-4-O-(4-O-β-D-glucopyranosylcaffeoyl) Quinic Acid Inhibits the Function of Myeloid-Derived Suppressor Cells to Enhance the Efficacy of Anti-PD1 against Colon Cancer. Pharmaceutical Research 35(9). https://doi.org/10.1007/s11095-018-2459-5

Litvinov, D., Selvarajan, K., Garelnabi, M., Brophy, L., & Parthasarathy, S. (2010). Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis, 209(2), 449–454.

https://doi.org/10.1016/j.atherosclerosis.2009.09.076

Liu, H.-B., Yu, D., Shin, S. C., Park, H.-R., Park, J. K., & Bark, K.-M. (2009). Spectroscopic Properties of Quercetin Derivatives, Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside, in Hydro-organic Mixed Solvents. Photochemistry and Photobiology, 85(4), 934–942. https://doi.org/10.1111/j.1751-1097.2009.00550.x

Lu, Z., Nie, G., Belton, P. S., Tang, H., & Zhao, B. (2006). Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 48(4), 263–274. https://doi.org/10.1016/j.neuint.2005.10.010

Luthria, D. L. (2006). Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. Journal of the Science of Food and Agriculture, 86(14), 2266–2272.

https://doi.org/10.1002/jsfa.2666

Marcarini, J. C., Tsuboy, M. S., Luiz, R. C., Ribeiro, L. R., Hoffmann-Campo, C. B., & Mantovani, M. S. (2011). Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells. Experimental and Toxicologic Pathology, 63(5), 459–465. https://doi.org/10.1016/j.etp.2010.03.005

McLaughlin, J. L., Rogers, L. L., & Anderson, J. E. (1998). The Use of Biological Assays to Evaluate Botanicals. Drug Information Journal, 32(2), 513–524. https://doi.org/10.1177/009286159803200223

Mertens-Talcott, S. U., et al., 2003. Quercetin and ellagic acid influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells in a synergistic manner. Nutrition and Cancer, 133(1), 2669-2674. https://academic.oup.com/jn/article-abstract/133/8/2669/4688007

Meyer, B. N., et al., 1982. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45, 31-34. https://www.researchgate.net/profile/David_Nichols3/publication/51380045_Brine_Shrimp_A_Convenient_General_Bioassay_for_Active_Plant_Constituents/links/09e415148b8347c9e6000000.pdf

Muzitano, M. F., Cruz, E. A., de Almeida, A. P., Da Silva, S. A., Kaiser, C. R., Guette, C., Rossi-Bergmann, B., & Costa, S. S. (2006). Quercitrin: An Antileishmanial Flavonoid Glycoside from Kalanchoe pinnata. Planta Medica, 72(1), 81–83. https://doi.org/10.1055/s-2005-873183

Nam, B., Jin Kyung Rho, Shin, D.-M., & Song, J. (2016). Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover. Bioorganic and Medicinal Chemistry Letters 26(19), 4571–4575.

https://doi.org/10.1016/j.bmcl.2016.08.083

Nazzaro-Porro, M., Passi, S., Picardo, M., Breathnach, A. S., Clayton, R., & G, Z. (1983). Beneficial effect of 15% azelaic acid cream on acne vulgaris. British Journal of Dermatology, 109(1), 45–48. https://doi.org/10.1111/j.1365-2133.1983.tb03990.x

Okarter, N., & Liu, R. H. (2010). Health Benefits of Whole Grain Phytochemicals. Critical Reviews in Food Science and Nutrition, 50(3), 193–208.

https://doi.org/10.1080/10408390802248734

Orfali, G. di C., Duarte, A. C., Bonadio, V., Martinez, N. P., de Araújo, M. E. M. B., Priviero, F. B. M., Carvalho, P. O., & Priolli, D. G. (2016). Review of anticancer mechanisms of isoquercitin. World Journal of Clinical Oncology, 7(2), 189.

https://doi.org/10.5306/wjco.v7.i2.189

Pan, Y., Liu, D., Wei, Y., Su, D., Lu, C., Hu, Y.-C., & Zhou, F. (2017). Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia. Frontiers in Pharmacology, 8, 359. https://doi.org/10.3389/fphar.2017.00359

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5(e47), 1-15. https://doi.org/10.1017/jns.2016.41

Passi, S., Picardo, M., Zompetta, C., Luca, C. de, Breathnach, A. S., & Nazzaro-porro, M. (1991). The Oxyradical-Scavenging Activity of Azelaic Acid in Biological Systems. Free Radical Research Communications, 15(1), 17–28.

https://doi.org/10.3109/10715769109049121

Qa’dan, F., et al., 2005. Characterization of antimicrobial polymeric procyanidins from Juglans regia leaf extract. European Journal of Scientific Reasearch, 11(3), 438-443. http://www.eurojournals.com/ejsr.htm

Queiroz, J. M. G., Suzuki, M. C. M., Motta, A. P. R., Nogueira, J. M. R., & Carvalho, E. M. de. (2015). Aspectos populares e científicos do uso de espécies de Eugenia como fitoterápico. Revista Fitos, 9(2), 87-100. https://doi.org/10.5935/2446-4775.20150008

Raina, H., Soni, G., Jauhari, N., Sharma, N., & Bharadvaja, N. (2014). Phytochemical importance of medicinal plants as potential sources of anticancer agents. Turkish Journal of Botany, 38, 1027–1035. https://doi.org/10.3906/bot-1405-93

Razavi, S. M., Zahri, S., Zarrini, G., Nazemiyeh, H., & Mohammadi, S. (2009). Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russian Journal of Bioorganic Chemistry, 35(3), 376–378. https://doi.org/10.1134/s1068162009030133

Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I., & Selamoglu, Z. (2018). Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Advances in Pharmacological Sciences, 2018, 1–15. https://doi.org/10.1155/2018/9794625

Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Russo, G. L. (2012). The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical Pharmacology, 83(1), 6–15. https://doi.org/10.1016/j.bcp.2011.08.010

Sakano, K., Mizutani, M., Murata, M., Shinji Oikawa, Yusuke Hiraku, & Shosuke Kawanishi. (2005). Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radical Biology and Medicine 39(8), 1041–1049.

https://doi.org/10.1016/j.freeradbiomed.2005.05.024

Silva, Y. L. da, Takemura, O. S., Santos, S. R. da S. R. dos, Romagnolo, M. B., & Laverde Junior, A. (2016). Triagem fitoquímica e avaliação de propriedades biológicas do extrato alcoólico das folhas de eugenia pyriformis Cambess. (Myrtaceae). Arquivos de Ciências Da Saúde Da UNIPAR, 19(3), 205-211.

https://doi.org/10.25110/arqsaude.v19i3.2015.5550

Silveira, A. C., Dias, J. P., Santos, V. M., Oliveira, P. F., Alves, M. G., Rato, L., & Silva, B. M. (2019). The Action of Polyphenols in Diabetes Mellitus and Alzheimer’s Disease: A Common Agent for Overlapping Pathologies. Current Neuropharmacology, 17(7), 590–613. https://doi.org/10.2174/1570159X16666180803162059

Sun, G., Zhang, S., Xie, Y., Zhang, Z., & Zhao, W. (2015). Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncology Letters, 11(1), 150–158. https://doi.org/10.3892/ol.2015.3845

Trojan-Rodrigues, M., Alves, T. L. S., Soares, G. L. G., & Ritter, M. R. (2012). Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. Journal of Ethnopharmacology, 139(1), 155–163. https://doi.org/10.1016/j.jep.2011.10.034

Truong, V. L., Ko, S. Y., Jun, M., & Jeong, W. S. (2016). Quercitrin from Toona sinensis (Juss.) M. Roem. attenuates Acetaminophen-Induced Acute Liver Toxicity in HepG2 Cells and Mice through Induction of Antioxidant Machinery and Inhibition of Inflammation. Nutrients, 8(7), 431. https://doi.org/10.3390/nu8070431

Yagasaki, K., Miura, Y., Okauchi, R., & Furuse, T. (2000). Inhibitory effects of chlorogenic acid and its related compounds on the invasion of hepatoma cells in culture. Cytotechnology, 33(1/3), 229–235. https://doi.org/10.1023/a:1008141918852

Yang, C. S., Jin, H., Guan, F., Chen, Y.-K., & Wang, H. (2020). Cancer preventive activities of tea polyphenols. Journal of Food and Drug Analysis, 20(1).

https://doi.org/10.38212/2224-6614.2103

Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010

Yin, Y., Li, W., Son, Y.-O., Sun, L., Lu, J., Kim, D., Wang, X., Yao, H., Wang, L., Pratheeshkumar, P., Hitron, A. J., Luo, J., Gao, N., Shi, X., & Zhang, Z. (2013). Quercitrin protects skin from UVB-induced oxidative damage. Toxicology and Applied Pharmacology, 269(2), 89–99. https://doi.org/10.1016/j.taap.2013.03.015

Downloads

Publicado

2023-07-13

Edição

Seção

Articles