Numerical simulation of gas reservoir incorporating the effects of slippage and adsorption
Simulação numérica de reservatórios de gás incorporando os efeitos do escorregamento e da adsorçãoa
Palavras-chave:
Adsorption and Slippage, Apparent permeability, Natural gas reservoirs, Transient Well Index, Well-reservoir couplingResumo
In this work, we incorporated the effects of slippage and adsorption into the transient productivity index to determine the pressure in horizontal wells in the simulation of natural gas reservoirs. We modeled the gas slippage by introducing an apparent permeability, a function of the Knudsen number, while the adsorption is incorporated using the Langmuir isotherm. As for the productivity index, we included the transient effects using one of the classic Peaceman reservoir-coupling models, in which we determine the integral exponential function using a polynomial approximation with a wide range of applications. We studied different production scenarios, and the transient productivity index leads to a mitigation of numerical storage. Besides, we showed that the adsorption, slippage, and the horizontal well influence the natural gas production in reservoirs with low permeability.
Downloads
Referências
AZIZ, M.; SETTARI, A. Petroleum Reservoir Simulation. New York, USA: Elsevier Applied Science, 1990.
BARRY, D. A.; PARLANGE, J. Y.; LI, L. Approximation for the exponential integral (Theis well function). Journal of Hydrology, Elsevier, v. 227, n. 1, p. 287–291, 2000.
BESTOK, A.; KARNIADAKIS, G. E. A model for flows in channels, pipes, ans ducts at micro and nano scales. Microscale Thermophysical Engineering, v. 3, p. 43–77, 1999.
BLANC, G.; DING, D.; ENE, A.; ESTEBENET, T.; RANHON, D. Transient productivity index for numerical well test simulations. Reservoir Characterization-Recent Advances, R. Schatzinger and J. Jordan, eds., p. 163–174, 1999.
BOURDET, D. Well Test Analysis: the use of advanced interpretation models. Amsterdam, The Netherlands: Elsevier, 2002.
CHEN, J.; YU, J.; AI, B.; SONG, M.; HOU, W. Determinants of global natural gas consumption and import-export flows. Energy Econ, 2018.
DELGADO, F. et al. O shale gas à espreita no Brasil: desmistificando a exploração dos recursos de baixa permeabilidade. FGV Energia, 2019.
DRANCHUK, P. M.; ABOU-KASSEM, J. H. Calculation of Z factors for natural gases using equations of state. Journal of Canadian Petroleum Technology, v. 14, p. 34–36, 1975.
EIA. International Energy Outlook. [S.l.], 2017.
ERTEKIN, T.; ABOU-KASSEM, J. H.; KING, G. R. Basic Applied Reservoir Simulation. [S.l.]: Society of Petroleum Engineers, Richardson, USA., 2001.
FIOREZE, M. et al. Gás natural: potencialidades de utilização no Brasil. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 10, p. 2251–2265, 2013.
FLORENCE, F. A.; RUSHING, J.; NEWSHAM, K. E.; BLASINGAME, T. A. Improved permeability prediction relations for low permeability sands. Society of Petroleum Engineers, 2007.
HELLER, R.; ZOBACK, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of unconventional oil and gas resources, Elsevier, v. 8, p. 14–24, 2014.
JIANG, J.; YOUNIS, R. M. A multimechanistic multicontinuum model for simulating shale gas reservoir with complex fractured system. Fuel, v. 161, p. 333–344, 2015.
JING, W. et al. Influences of adsorption/desorption of shale gas on the apparent properties of matrix pores. Petroleum Exploration and Development, Elsevier, v. 43, n. 1, p. 158–165, 2016.
KLINKENBERG, L. The permeability of porous media to liquids and gases. In: AMERICAN PETROLEUM INSTITUTE. Drilling and production practice. [S.l.], 1941. p. 200–213.
LEAL, F. I.; REGO, E. E.; RIBEIRO, C. de O. Natural gas regulation and policy in Brazil: Prospects for the market expansion and energy integration in mercosul. Energy policy, Elsevier, v. 128, p. 817–829, 2019.
LEE, A. L.; GONZALEZ, M. H.; EAKIN, B. E. The viscosity of natural gases. Petroleum technology. Transactions of AIME, v. 18, p. 997–1000, 1966.
LI, D.; ZHANG, L.; WANG, J. Y.; LU, D.; DU., J. Effect of adsorption and permeability correction on transient pressures in organic rich gas reservoirs: Vertical and hydraulically fractured horizontal wells. Journal of Natural Gas Science and Engineering, v. 31, p. 214–225, 2016.
NICK, H. M.; RAOOF, A.; CENTLER, F.; THULLNER, M.; REGNIER, P. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of Contaminant Hydrology, v. 145, p. 90–104, 2013.
PEACEMAN, D. W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Society of Petroleum Engineers Journal, Paper SPE 10528, v. 23, p. 531–543, 1983.
ROSA, A.; CARVALHO, R.; XAVIER, J. Engenharia de reservatórios de petróleo. [S.l.]: Interciência, 2006.
ROSÁRIO, R. C. D. do. Determinação de Pressão em Poços Horizontais na Simulação Numérica de Reservatórios de Gás Natural Incorporando os Efeitos de Escorregamento e de Adsorção. Tese (Doutorado) — Instituto Politécnico, Universidade do Estado do Rio de Janeiro, 2020.
ROSÁRIO, R. C. D. do; SOUZA, G. de; AMARAL SOUTO, H. P.. Comparative study of some well-reservoir coupling models in the numerical simulation of oil reservoirs. International Journal of Advanced Engineering Research and Science, v. 7, n. Issue-9, p. 126–148, 2020.
SEGLETES, S. B. A Compact Analytical Fit to the Exponential Integral E1 (x). [S.l.], 1998.
SUÁREZ, A. A. The expansion of unconventional production of natural gas: tight gas, gas shale and coal bed methane. In: AL-MEGREN, D. H. (Ed.). Advances in Natural Gas Technology. ISBN: 978-953-51-0507-7: InTech, 2012.
TAVARES, A. L. L. O gás natural na matriz energética brasileira e a contribuição do pré-sal no fornecimento deste importante combustível. [S.l.], 2014.
VILLAZON, M. et al. Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-Darcy flow mechanisms. Society of Petroleum Engineers, 2011.
WANG, C. Pressure transient analysis of fractured wells in shale reservoirs. Dissertação (Mestrado) — Colorado School of Mines (Petroleum Engineering), 2013.
WANG, M.; WANG, L.; ZHOU, W.; YU, W. Lean gas huff and puff process for Eagle Ford shale: Methane adsorption and gas trapping effects on eor. Fuel, Elsevier, v. 248, p. 143–151, 2019.
ZHANG, R.-H.; ZHANG, L.-H.; LUO, J.-X.; YANG, Z.-D.; XU, M.-Y. Numerical simulation of water flooding in natural fractured reservoirs based on control volume finite element method. Journal of Petroleum Science and Engineering, Elsevier, v. 146, p. 1211–1225, 2016.