miRNAs activate mitochondrial energy metabolism: a narrative view
miRNAs ativam o metabolismo energético mitocondrial: uma visão narrativa
Palavras-chave:
Mitochondria, miRNAs, MitomiR, ATPResumo
MicroRNAs (miRNAs) are small, non-coding single-stranded RNA molecules that participate in the repression of translation or degradation of messenger RNA. miRNAs play a significant role in cellular regulatory mechanisms and have been implicated in numerous pathological processes. However, research indicates the presence of miRNAs in mitochondria called mitomiRs originating from mitochondrial DNA, with direct action on genes encoding proteins and enzymes that participate in mitochondrial function. The mitochondrial localization of miRNAs has gained relevance since it was observed that mitomiR populations are modified throughout the cell cycle. Currently, miRNAs are known to act in several biological processes, including being considered key to better understand several processes that lead to ATP production as well as mitochondrial dysfunctions. Thus, the objective of this review is to narrate the molecular mechanisms of miRNAs actions in mitochondrial energy pathway.
Downloads
Referências
AGBU, P.; CARTHEW, R. W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nature reviews molecular cell biology, v. 22, n. 6, p. 425-438, 2021.
ANNESLEY, S. J.; FISHER, P. R. Mitochondria in health and disease. Cells, v. 8, n. 7, p. 680, 2019.
ASCHRAFI, Armaz et al. MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cellular and Molecular Life Sciences, v. 69, p. 4017-4027, 2012.
CHANDEL, N.S. Mitochondria. Cold Spring Harbor Perspectives in Biology, v. 13, n. 3, p. a040543, 2021.
CITRIN, K.M.; FERNÁNDEZ‐HERNANDO, C.; SUÁREZ, Y. MicroRNA regulation of cholesterol metabolism. Annals of the New York Academy of Sciences, v. 1495, n. 1, p. 55-77, 2021.
CHUANG, Y. C.; CHEN, S. D.; JOU, S. B.; LIN, T. K.; CHEN, S. F.; CHEN, N. C.; HSU, C. Y. Sirtuin 1 regulates mitochondrial biogenesis and provides an endogenous neuroprotective mechanism against seizure-induced neuronal cell death in the hippocampus following status epilepticus. International Journal of Molecular Sciences, 20(14), 2019,3588.
DAHLMANS, Dennis et al. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clinical science, v. 130, n. 11, p. 843-852, 2016.
DAS Samarjit et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PloS one, v. 9, n. 5, p. e96820, 2014.
DUARTE, F. V.; PALMEIRA, C. M.; ROLO, A. P. The role of microRNAs in mitochondria: small players acting wide. Genes, 5(4), 865-886.2014.
DUARTE, F.V.; PALMEIRA, C.M.; ROLO, A.P. The emerging role of MitomiRs in the pathophysiology of human disease. microRNA: Medical Evidence: From Molecular Biology to Clinical Practice, p. 123-154, 2015.
FERNÁNDEZ-HERNANDO, Carlos et al. MicroRNAs in metabolic disease. Arteriosclerosis, thrombosis, and vascular. Biology, v. 33, n. 2, p. 178-185, 2013.
GEIGER, J.; DALGAARD, L. T. Interplay of mitochondrial metabolism and microRNAs. Cellular and Molecular Life Sciences, 74(4), 631–646.2017.
GOHEL, Dhruv et al. The emerging molecular mechanisms for mitochondrial dysfunctions in FXTAS. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1866, n. 12, p. 165918, 2020.
GOHEL, D.; SINGH, R. Different platforms for mitomiRs in mitochondria: Emerging facets in regulation of mitochondrial functions. Mitochondrion, v. 66, p. 67-73, 2022.
HICKS, J. A.; LIU, Hsiao-C. Centennial Review: Metabolic microRNA-shifting gears in the regulation of metabolic pathways in poultry. Poultry Science, v. 100, n. 3, p. 100856, 2021.
HUANG, Wen-Kuan et al. Imatinib regulates miR-483-3p and mitochondrial respiratory complexes in gastrointestinal stromal tumors. International Journal of Molecular Sciences, v. 22, n. 19, p. 10600, 2021.
HUANG, Deyu et al. Mitochondria: a critical target in the toxicity of trichothecenes and potential treatment strategies. Trends in Food Science & Technology 88:33–45. doi: 10.1016/j.tifs.2019.
JUNG, Kyeong-Ah et al. NFE2L2/NRF2 activity is linked to mitochondria and AMP-activated protein kinase signaling in cancers through miR-181c/mitochondria-encoded cytochrome c oxidase regulation. Antioxidants & Redox Signaling, v. 27, n. 13, p. 945-961, 2017.
JUSIC, A.; DEVAUX, Y.; EU-CARDIORNA C. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic research in cardiology, v. 115, n. 3, p. 23, 2020.
LIMA, T. I; ARAUJO, H. N.; MENEZES, E. S.; SPONTON, C. H.; ARAÚJO, M. B.; BOMFIM, L. H.; SILVEIRA, L. R. Role of microRNAs on the regulation of mitochondrial biogenesis and insulin signaling in skeletal muscle. Journal of Cellular Physiology, 232(5), 958-966.2017.
KANG, T.; LU, W.; XU, W.; ANDERSON, L.; BACANAMWO, M.; THOMPSON, W.; CHEN, Y.E.; LIU, D. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J. Biol. Chem., 288, 34394–34402. 2013.
KARBIENER, M.; PISANI, D.F.; FRONTINI, A.; OBERREITER, L.M.; LANG, E.; VEGIOPOULOS, A.; MÖSSENBÖCK, K.; BERNHARDT, G.A.; MAYR, T.; HILDNER, F. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells, 32, 1578–1590. 2014.
LIU, Yunshuang et al. Variations in MicroRNA-25 expression influence the severity of diabetic kidney disease. Journal of the American Society of Nephrology, v. 28, n. 12, p. 3627-3638, 2017.
MACGREGOR-DAS, A.M.; DAS, S. A. microRNA’s journey to the center of the mitochondria. American Journal of Physiology-Heart and Circulatory Physiology, v. 315, n. 2, p. H206-H215, 2018.
MCNAMARA, M.G.; SAHEBJAM, S.; MASON, W.P. Emerging biomarkers in glioblastoma. Cancers, v. 5, n. 3, p. 1103-1119, 2013.
NEZAMI, B.G.; MWANGI, S.M.; LEE, J.E.; JEPPSSON, S.; ANITHA, M.; YARANDI, S.S.; FARRIS, A.B.; SRINIVASAN, S. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology, 146, 473–483.e3.2014.
ORTIZ FERRÀ, M. Papel de los microRNAs mitocondriales (mitomiRs) en patología humana. dspace.uib.es, 2019.
RAMEZANI-ALIAKBARI, Fatemeh et al. Trimetazidine increases plasma microRNA-24 and microRNA-126 levels and improves dyslipidemia, inflammation and hypotension in diabetic rats. Iranian Journal of Pharmaceutical Research: IJPR, v. 19, n. 3, p. 248, 2020.
RAYNER, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931.2011.
SHARMA, Praveen et al. Small regulatory molecules acting big in cancer: potential role of mito-miRs in cancer. Current Molecular Medicine, v. 19, n. 9, p. 621-631, 2019.
SCHREPFER, E.; SCORRANO, L. Mitofusins, from mitochondria to metabolism. Molecular cell, v. 61, n. 5, p. 683-694, 2016.
SILVER, J.; WADLEY, G.; LAMON, S. Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs? Experimental Physiology, v. 103, n. 8, p. 1132-1144, 2018.
SVENSSON, K.; HANDSCHIN, C. MicroRNAs emerge as modulators of NAD+-dependent energy metabolism in skeletal muscle. Diabetes, v. 63, n. 5, p. 1451-1453, 2014.
WU, Hao et al. The role of microRNAs in diabetic nephropathy. Journal of diabetes research, v. 2014, 2014.
WU, Jizhi et al. miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk. Scientific Reports, v. 11, n. 1, p. 16582, 2021.
ZHANG, MoLan et al. MiR-204-5p promotes lipid synthesis in mammary epithelial cells by targeting SIRT1. Biochemical and Biophysical Research Communications, v. 533, n. 4, p. 1490-1496, 2020.