Flavonoids activated signaling pathways of mitochondrial biogenesis

Vias de sinalização da biogênese mitocondrial ativadas pelos flavonoides

Autores

Palavras-chave:

Flavanoids, Mitochondria, Biogenesis

Resumo

The signaling pathways regulated by mitochondria involve among others, the intrinsic apoptotic pathway, calcium homeostasis and reactive oxygen species signaling, and ATP synthesis. The aim of this review is to narrate the importance of flavanoids (e.g., flavones, flavones, flavonols, flavonols-3-ols, anthocyanidins and isoflavones) in mitochondrial biogenesis. Therefore, the induction of mitochondrial biogenesis can be stimulated by nutrition by stimulating pathways that are responsible for activating certain kinases such as AMPK, p38 MAPK and Sirtuin 1, thereby signaling the expression of PGC-1α the conductor of mitochondrial biogenesis.

Downloads

Não há dados estatísticos.

Referências

CHEN, Dan et al. A high‐fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. Journal of cellular biochemistry, v. 119, n. 11, p. 9602-9602, 2018.

CRAIG, D. M.; ASHCROFT, S. P.; BELEW, M. Y.; STOCKS, B.; CURRELL, K.; BAAR, K.; PHILP, A. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Frontiers in physiology, 6, 296, 2015.

DE OLIVEIRA, M. R.; NABAVI, S. M.; BRAIDY, N.; SETZER, W. N.; AHMED, T.; NABAVI, S. F. Quercetin and the mitochondria: a mechanistic view. Biotechnology advances, 34(5), 532-549, 2016.

DO ROCIO SMOLINSKI SAVI, Patrícia et al. Análise de flavonoides totais presentes em algumas frutas e hortaliças convencionais e orgânicas mais consumidas na região Sul do Brasil. Demetra: Food, Nutrition & Health/Alimentação, Nutrição & Saúde, v. 12, n. 1, 2017.

DOS SANTOS, T.W.; MIRANDA, J.; TEIXEIRA, L.; AIASTUI, A.; MATHEU, A.; GAMBERO, A.; PORTILLO, M.P.; RIBEIRO, M.L. Yerba mate stimulates mitochondrial biogenesis and thermogenesis in high-fat-diet-induced obese mice. Mol. Nutr. Food Res. e1800142, 2018.

DUFFE, KJ.; SUTHERLAND, L.A. Adult cranberry beverage consumers have healthier macronutrient intakes and measures of body composition compared to non-consumers: National Health and Nutrition Examination Survey (NHANES) 2005-2008. Nutrients, 5(12):4938-49, 2013.

EFRAIM, P.; ALVES.; A.B.; JARDIM D.C.P. Revisão: polifenóis em cacau e derivados: teores, fatores de variação e efeitos na saúde. Braz J Food Technol. 14(3):181-201. 2011.http://dx.doi.org/10.4260/BJFT201114030002.

FERRARA, L.; JOKSIMOVIC, M.; D'ANGELO, S. Modulation of mitochondrial biogenesis: Action of physical activity and phytochemicals. Journal of Physical Education and Sport, 21(1), 425-433, 2012.

HENAGAN, T. M.; CEFALU, W. T.; RIBNICKY, D. M.; NOLAND, R. C.; DUNVILLE, K.; CAMPBELL, W. W.; MORRISON, C. D. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity. Genes & nutrition, 10(1), 2.2015.

JAMWAL, S.; BLACKBURN, J. K.; ELSWORTH, J. D. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacology & Therapeutics, 219, 107705, 2021.

KIM, C. S.; KWON, Y.; CHOE, S. Y.; HONG, S. M.; YOO, H.; GOTO, T.; YU, R. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutrition & Metabolism, 12(1), 1-9, 2015.

KIM, Y.S.; HONG, C.; LEE, S.W. Effects of ginger and its pungent constituents on transient receptor potential channels. Int J Mol Med; 38 (6): 1905-1914, 2016.

KONDADI, A. K.; ANAND, R.; REICHERT, A. S. Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity. International journal of molecular sciences, 20(17), 4311, 2019.

LEE, MAK-SOON.; KIM, YANGHA. Effects of isorhamnetin on adipocyte mitochondrial biogenesis and AMPK activation. Molecules, v. 23, n. 8, p. 1853, 2018.

LI, X.; WANG, H.; GAO, Y.; LI, L.; TANG, C.; WEN, G.; ZHOU, Y.; ZHOU, M.; MAO, L.; FAN, Y. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the nrf2 signaling pathway. PLoS ONE ,11, e0164237,2016.

LONE, J.; CHOI, J. H.; KIM, S. W.; YUN, J. W. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. The journal of nutritional biochemistry, 27, 193-202, 2016.

MARTEL, J.; OJCIUS, D. M.; KO, Y. F.; KE, P. Y.; WU, C. Y.; PENG, H. H.; YOUNG, J. D. Hormetic effects of phytochemicals on health and longevity. Trends in Endocrinology & Metabolism, 30(6), 335-346, 2019.

MORAES, Giovanna Vizzaccaro et al. Potencial antioxidante dos flavonoides e aplicações terapêuticas. Research, Society and Development, v. 11, n. 14, p. e238111436225-e238111436225, 2022.

NEGRETTE-GUZMÁN, M.; GARCÍA-NIÑO, W.R.; TAPIA, E. Curcumin attenuates gentamicin-induced kidney mitochondrial alterations: possible role of a mitochondrial biogenesis mechanism. Evid Based Complement Alternat Med; 917435, 2015.

NIEMAN, D. C. Quercetin’s bioactive effects in human athletes. Current Topics in Nutraceutical Research, vol. 8, n. 1, pp. 33-44, 2010.

NIEMAN, David C. et al. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc, v. 42, n. 2, p. 338-45, 2010.

RAY HAMIDIE, R.D.; YAMADA, T.; ISHIZAWA, R. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism; 64 (10): 1334-47, 2015.

RAYAMAJHI, N.; KIM, S. K.; GO, H.; JOE, Y.; CALLAWAY, Z.; KANG, J. G.; CHUNG, H. T. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxidative medicine and cellular longevity, 2013.

RAYAMAJHI, N.; KIM, S. K.; GO, H.; JOE, Y.; CALLAWAY, Z.; KANG, J.-G.; RYTER, S.W.; CHUNG, H.T. Quercetin induces mitochondrial biogenesis through activation of ho-1 in hepg2 cells. Oxid. Med. Cell. Longev. 154279, 2013.

RAYAMAJHI, Nabin et al. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxidative medicine and cellular longevity, v, 2013.

REHMAN, H.; KRISHNASAMY, Y.; HAQUE, K.; THURMAN, R.G.; LEMASTERS, J.J.; SCHNELLMANN, R.G.; ZHONG, Z. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS ONE, 8, e6502, 2014.

ROBB, E.L.; MORADI, F.; MADDALENA, L.A.; VALENTE, A.J.F.; FONSECA, J.; STUART, J.A. Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2. Biochem. Biophys. Res. Commun. 485, 249–254, 2017.

STOHS, S.J.; BADMAEV, V. A Review of natural stimulant and non-stimulant thermogenic agents. Phytother Res; 30 (5): 732-40, 2016.

YOSHINO, Makiko et al. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. The Journal of nutritional biochemistry, v. 26, n. 11, p. 1193-1199, 2015.

ZOROV, D.B.; JUHASZOVA, M.; SOLLOTT.; S.J. Espécies mitocondriais reativas de oxigênio (ROS) e liberação de ROS induzida por ROS. Physiological reviews, 94 (3), 909-950, 2014.

Downloads

Publicado

2023-06-14

Edição

Seção

Articles