Computational thinking and creativity: interrelationships with problem solving

Pensamento computacional e a criatividade: inter-relações com a resolução de problemas

Autores

Palavras-chave:

EPECREL Methodology, Representational Fluency, Free Educational Robotics, Meaningful Learning, Mathematics

Resumo

The present work is the report of a research, using the EPECREL methodology developed by the Educational Technology Study Group – GETEC-EDU of the Postgraduate Program in Teaching Natural Sciences and Mathematics at FURB, with the objective of developing a methodology for Teaching Computational Thinking using Free Educational Robotics (EPECREL). This methodology was thought and developed to be applied in a transdisciplinary and multireferential environment and has its reference in Ausubel's theory of Assimilation and in Vygotsky. The EPECREL methodology makes use of Free Educational Robotics (REL) as a potentially significant material for the insertion of mathematical contents in a more practical and less abstract way, which is used for the construction of mathematical concepts and technological artifacts. In this context, we try to understand how to use RE as a way of acquiring references.

Downloads

Não há dados estatísticos.

Biografia do Autor

Vera Rejane Niedersberg Schuhmacher, Universidade do Sul de Santa Catarina

Pós-Doutora em Tecnologia Educacional, Universidade do Minho (UMinho) - Portugal; Universidade do Sul de Santa Catarina – Brasil; Programa de Pós-graduação em Educação(PPGE/UNISUL), Grupo de Pesquisa Interdisciplinar em Tecnologia da Informação e Comunicação;

Referências

AINSWORTH, S. The functions of multiple representations. Computers & Education, v. 33, n. 2-3, p. 131-152, 1999.

AUSUBEL, D. P.; NOVAK, J. D.; HANESIAN, H. Psicologia educacional. Rio de Janeiro: Interamericana, 1980.

BARROWS, H. S. A. Taxonomy of Problem-Based Learning methods. Medical Education, v.20, pp. 481-486, 1986.

BARELL, J. Problem-Based Learning. An Inquiry Approach. Thousand Oaks: Corwin Press. 2007.

BONWELL, C. C., & EISON, J. A. Active Learning: Creating Excitement in the Classroom. ASHE-ERIC Higher Education Report, Washington DC: School of Education and Human Development, George Washington University. 1991.

HILL, M. e SHARMA, M. D. Students’ representational fluency at university: a cross-sectional measure of how multiple representations are used by physics students using the representational fluency survey. Eurasia Journal of Mathematics, Science and Technology Education, v. 11, n. 6, p. 1633-1655, 2015.

LAMBROS, A. Problem-Based Learning in K-8 Classrooms – A Teacher’s Guide to Implementation. Thousand Oaks: Corwin Press, Inc. 2002.

LABURÚ, C. E., BARROS, M. A. e SILVA, O. H. M. Multimodos e múltiplas representações, aprendizagem significativa e subjetividade: três referenciais conciliáveis da educação científica. Ciência & Educação, v. 17, n. 2, p. 469-487, 2011.

MOREIRA, M. A. Aprendizagem significativa: A teoria e textos complementares, São Paulo, Editora LF, 2011.

MOREIRA, M. A. Teorias de aprendizagem. São Paulo: EPU, 1999.

PAPERT, S. A Máquina das Crianças: repensando a escola na era da informática, Porto Alegre: Artmed, p. 216, 2008.

POZZEBON, E., FRIGO, L. B. Robótica no Processo de Ensino e Aprendizagem, International Conference on Interactive Computer aided Blended Learning, ICBL, p. 214, 2013.

SMITH, F. Compreendendo a Leitura. Artmed, Porto Alegre, 1988).

SCHUHMACHER, E; SCHUHMACHER, V.R.N.; Clube de Tecnologia como Ambiente Multirreferencial para Aprendizagem Significativa de Ciências e Tecnologias, Revista Dynamis, v. 25, n. 3, pp. 38-51, 2019.

VYGOTSKY, L. L. Vygotsky: Pressupostos E Desdobramentos, traduzido por Elizabeth J. Cestari, Mònica Saddy Martins, São Paulo, Papirus Editora, 1994.

Downloads

Publicado

2023-06-15

Edição

Seção

Articles