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ABSTRACT 

Sound field behavior in an acoustic enclosure is an important part of the design of transportation vehicle 

passenger cabin, concert halls, conference rooms, and etc. Different analysis methods are available and 

have strengths and weaknesses. Low frequency band envelopes and negligible absorption in the walls can 

be modeled by Modal Analysis or Finite Element Method. However, as the frequency band increases, both 

methods become computationally intensive and Statistical Energy Analysis or the Sabine model can be an 

efficient approach. However, these methods do not take into account any spatial variation within the 

enclosure. The Energy Flow Analysis (EFA) solution for acoustic enclosures can be done analytically. In 

this paper, the Energy Spectral Element Method (ESEM) is formulated and applied to predict the spatial 

distribution of energy flux and density of acoustic ducts at high frequencies. ESEM is a matrix methodology 

based on EFA to solve acoustic and structural vibration problems. In this work, numerical models involving 

simple and coupled one-dimensional acoustic ducts are generated by ESEM, and the results are compared 

with energy densities calculated from the pressure fields predicted by the Spectral Element Method (SEM). 

Keywords: Energy Flow Analysis; Waveguides; Energy Spectral Element Method; Acoustic Enclosure. 

 

 

RESUMO 

O comportamento do campo sonoro em um gabinete acústico é uma parte importante do projeto de cabines 

de passageiros de veículos de transporte, salas de concerto, salas de conferência e etc. Diferentes métodos 

de análise estão disponíveis e têm pontos fortes e fracos. Gabinetes submetidos a banda de baixa frequência 

e absorção desprezível nas paredes podem ser modelados por Análise Modal ou FEM. No entanto, à medida 

que a banda de frequência aumenta, ambos os métodos se tornam intensivos e a Análise Estatística de 
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Energia ou o modelo de Sabine podem ser eficientes. Esses métodos não levam em conta qualquer variação 

espacial dentro do recinto. A solução de Análise de Fluxo de Energia (EFA) para caixas acústicas pode ser 

feita analiticamente. Neste artigo, o Método dos Elementos Espectrais de Energia (ESEM) é aplicado para 

prever a distribuição espacial da densidade e fluxo de energia de dutos acústicos em altas frequências. 

ESEM é baseado em EFA para resolver problemas de vibração acústica e estrutural. Modelos numéricos 

para dutos acústicos unidimensionais simples e acoplados são gerados pelo ESEM, os resultados são 

comparados com densidades de energia calculadas pelo Método dos Elementos Espectrais (SEM). 

Palavras-chave: Análise de Fluxo de Energia; Guias de onda; Método dos Elementos Espectrais de 

Energia; Gabinete Acústico. 
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INTRODUCTION  

Currently, for product designs such as airplane, automobile, household appliance, 

lecture rooms, and etc., the sound level is a very important factor to determine the products 

acceptance by consumers. Despite of several types of tools available to design engineers 

including, Sabine room acoustic model, Modal Analysis, Statistical Energy Analysis (SEA), 

Finite Element Method (FEM), and Energy methods, scientists and researchers have been 

developing new predictive tools. FEM have the inherent characteristic to generate high order 

computational models, which makes their use inadequate at high modal density range. Therefore, 

complex structure behavior at high-frequency band is still an active research subject. A 

commonly used high frequency modeling approach is SEA (Lyon and Dejong, 1995). Its 

limitation comes from the inability to calculate the energy spatial variation in each subsystem. 

EFA is an enhanced SEA, since it provides the spatial energy distribution within the subsystems 

(Wohlever and Bernhard, 1992). The ESEM consists of applying the same matrix methodology 

of FEM to the analytical solution of EFA (Santos at al., 2008). In this paper an extension of 

ESEM formulation for acoustic wave propagation problem in a single and coupled finite one-

dimensional waveguide (duct) is presented. The model is based on the assumption of plane 

waves and a gas loss factor is included. Single and coupling circular cross section duct examples 

are simulated by ESEM and energy density and flow results are presented. Results for coupled 

ducts examples with discontinuities due to cross section area and gas property variation are 

shown too. These results are verified with ones calculated by the spectral element (Donadon and 

Arruda, 2003). 

BASIC THEORY 

One-dimensional Acoustic Energy Spectral Element 

An extension of Energy Spectral Element Method (ESEM) to the acoustic medium is 

proposed, which allows solving the approximated energy flow solution by applying the same 

matrix scheme as FEM and SEM. For steady state condition, harmonic excitation, small gas loss 

factor (  << 1), the time and space averaged energy density for acoustic plane waves in a one-

dimensional waveguides can be written as (Wohlever and Bernhard, 1992), 

−
𝑐2

𝜂𝜔
𝛻2⟨𝑒̄⟩ + 𝜂𝜔⟨𝑒̄⟩ = 𝛱                                                                                                                           (1) 

where   represents time-average, ¯ represents space-average, e is the energy density,  is the gas 

loss factor,  is the circular frequency, c is the sound velocity and  is the input power. The 

energy flow (intensity) is related to the energy density by: 

⟨𝑞̄⟩ = −
𝑐

𝜂𝜔
𝛻⟨𝑒̄⟩                                                                                                                                                         (2)  
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The one-dimensional homogenous solution of Eq. (1) is given by: 

⟨𝑒̄⟩(𝑥) = 𝐺𝑒𝜂𝑘𝑥 +𝐻𝑒−𝜂𝑘𝑥                                                                                                                                       (3) 

where ck =  is the wavenumber, G and H are constant coefficients determined from boundary 

conditions. By applying end conditions in a two-node acoustic energy spectral element (Fig. 1a), 

the energy density at any arbitrary point along the element is obtained as: 

⟨𝑒̄⟩(𝑥) = (
𝑒𝜂𝑘𝑥−𝑒𝜂𝑘(2𝐿−𝑥)

1+𝑒2𝜂𝑘𝐿
)⏟          

h1(𝑥)

⟨𝑒̄1⟩ + (
𝑒𝜂𝑘(𝐿−𝑥)−𝑒𝜂𝑘(𝐿+𝑥)

1+𝑒2𝜂𝑘𝐿
)⏟          

ℎ2(𝑥)

⟨𝑒̄2⟩                                                                 (4) 

Figure 1–Two-node one-dimensional acoustic waveguide element by: (a) ESEM; (b) SEM 

 

(a) 

 

(b) 

Source: Authors 

where h1(x) and h2(x) are the interpolation functions of the energy spectral element. By 

substituting Eq. (4) in Eq. (2) the energy flow at any arbitrary point along the element can be 

written as, 

⟨𝑞̄⟩(𝑥) = −
𝑘𝑐2

𝜔(1−𝑒2𝜂𝑘𝐿)
[(𝑒𝜂𝑘𝑥 − 𝑒𝜂𝑘(2𝐿−𝑥))⟨𝑒̄1⟩ + (𝑒

𝜂𝑘(𝐿+𝑥) + 𝑒𝜂𝑘(𝐿−𝑥))⟨𝑒̄2⟩]            (5) 

By applying end conditions in a two-node acoustic spectral energy element (Fig. 1a) the 

energy flow can be written in a matrix form as: 

{
⟨𝑞̄1⟩

⟨𝑞̄2⟩
} = −

𝑘𝑐2

𝜔⥂(1−𝑒2𝜂𝑘𝐿)
[1 + 𝑒

2𝜂𝑘𝐿 −2𝑒𝜂𝑘𝐿

−2𝑒𝜂𝑘𝐿 1 + 𝑒2𝜂𝑘𝐿
]

⏟                        
𝑲𝐸

{
⟨𝑒̄1⟩

⟨𝑒̄2⟩
}                                                                   (6) 

where, KE is the spectral energy flow element matrix. 

Reactive-type exhaust mufflers use the ability of a cross section area change to attenuate 

the sound energy transmitted in a duct. Also, the medium property change in a duct will attenuate 

the sound energy transmitted. In the acoustic filter theory, the medium is assumed to be stationary 

and the wave propagation is governed by the 1-D wave equation. To account for these 

discontinuities in the energy model, additional coupling relationships need to be formulated and 
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inserted at these connection points. Since a rod and an acoustic duct are ruled by the same wave 

equation, the joint element used in this study is the same proposed by Cho and Bernhard (1998) 

for structural coupling type rod–rod. Then, the acoustic coupling relationship is obtained as: 

{
⟨𝑞̄𝑖⟩

⟨𝑞̄𝑗⟩
} = −

𝜏𝑖𝑗

2𝑟𝑖𝑖
[
𝑐𝑖 −𝑐𝑗
−𝑐𝑖 𝑐𝑗

]
⏟          

𝑱

{
⟨𝑒̄𝑖⟩

⟨𝑒̄𝑗⟩
}                                                                                                                    (7) 

where ij and rii are the power transmission and reflection coefficients at the coincident nodes 

between elements i and j. 

One-dimensional Acoustic Spectral Element 

Considering that SEM will be used to verify the proposed element, a brief formulation of 

them is presented here. Although proposed by Doyle (1997) to study structural wave propagation, 

the governing equations for acoustic and structural one-dimensional waveguides are the same. 

The Helmholtz equation is the linearized, lossless wave equation for sound propagation in fluids, 

re-written here as a lossy wave equation as (Kinsler et al, 1982): 

𝜕2𝑝

𝜕𝑥2
− 𝑘𝑐

2𝑝̂ = 0                                                                                                                                                  (8) 

where 
^
 indicates frequency domain function, and p is the acoustic pressure. The complex 

wavenumber is included to account for the energy absorption mechanism in the gas, given by 

( )21 ikkc − , where i = 1− . The linear Euler equation states the relationship between particle 

velocity and acoustic pressure by: 

𝑢̂ = −
1

𝑖𝜔𝜌

𝜕𝑝

𝜕𝑥
                                                                                                                                                                (9) 

where  is the mass density. The general solution of Eq. (9) can be written as, 

𝑝̂(𝑥) = 𝐴𝑒−𝑖𝑘𝑐𝑥 + 𝐵𝑒𝑖𝑘𝑐𝑥                                                                                                                                          (10) 

where A and B are constant coefficients determined from the boundary conditions. Applying end 

conditions in a two-node acoustic spectral element (Fig. 1b), the acoustic pressure at any arbitrary 

point along the element is, 

𝑝̂(𝑥) = (
𝑒𝑖𝑘𝑐𝑥−𝑒𝑖𝑘𝑐(2𝐿−𝑥)

1−𝑒2𝑖𝑘𝑐𝐿
)⏟          

𝑔̂1(𝑥)

𝑝̂1 − (
𝑒𝑖𝑘𝑐(𝐿−𝑥)−𝑒𝑖𝑘𝑐(𝐿+𝑥)

1−𝑒2𝑖𝑘𝑐𝐿
)⏟            

𝑔̂2(𝑥)

𝑝̂2                                                                      (11) 

where, g1(x) and g2(x) are the interpolation functions of the spectral element. By substituting Eq. 

(11) in Eq. (9) the particle velocity at any arbitrary point along the element can be written as, 
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𝑢̂(𝑥) = −
𝑘𝑐

𝜔𝜌(1−𝑒2𝑖𝑘𝑐𝐿)
[(−𝑒𝑖𝑘𝑐𝑥 − 𝑒𝑖𝑘𝑐(2𝐿−𝑥))𝑝̂1 + (𝑒

𝑖𝑘𝑐(𝐿+𝑥) + 𝑒𝑖𝑘𝑐(𝐿−𝑥))𝑝̂2]                (12) 

Applying end conditions in the two-node acoustic spectral element (Fig. 1b), the particle velocity 

can be written in a matrix form as: 

{
𝑢̂1
𝑢̂2
} = −

𝑘𝑐

𝜔𝜌(1−𝑒2𝑖𝑘𝑐𝐿)
[1 + 𝑒

2𝑖𝑘𝑐𝐿 −2𝑒𝑖𝑘𝑐𝐿

−2𝑒𝑖𝑘𝑐𝐿 1 + 𝑒2𝑖𝑘𝑐𝐿
]

⏟                        
𝑲𝑆

{
𝑝̂1
𝑝̂2
}                                                             (13) 

where, KS is the dynamic spectral element matrix. 

The time-average energy density in an acoustic medium is the sum of potential and 

kinetic energy densities as: 

⟨𝑒⟩ =
1

4
(𝜌𝑢̂𝑢̂∗ +

1

𝜌𝑐2
𝑝̂𝑝̂∗)                                                                                                                                  (14) 

where * represents complex conjugate. Time-average energy flow (intensity) in an acoustic 

medium is written as: 

⟨𝑞⟩ =
1

2
ℜ{𝑝̂𝑢̂∗}                                                                                                                                                      (15) 

where  is the real part of a complex number. 

SIMULATED RESULTS 

Single Element 

The one-dimensional acoustic waveguide consists of a rigid wall cylindrical duct with an 

unflanged open end and harmonically excited at the other end. The acoustic medium is the air at 

20ºC ( = 1.21 kg/m3; c = 343 m/s; and  = 2.8610-3), and the duct geometry is R = 2.010-3 m 

and L = 6.0m. The harmonic excitation for the SEM model is the particle velocity with a 

magnitude u = 110-3 m/s, while for the ESEM model it is the corresponding input power 

calculated with the Eq.(15). To account for the duct unflanged open end, a radiation impedance 

is included in the SEM model as ZmL = cS (0.25k2R2−i0.6kR), while a corresponding energy flow 

is incorporated in the ESEM model as q = ce, where  =  /(2−) and  = 1−|(ZmL−c) 

/(ZmL+c)|2. 

Figure 2a shows the responses in acoustic pressure and particle velocity for one-

dimensional acoustic SEM element at the frequency f = 500 Hz. A typical plot of the time-

averaged total, potential and kinetic energy densities in the SEM element is shown in Fig. 2b. The 

harmonic portions of the potential and kinetic energy density sum to give what appears to be a 

constant value of energy density along the element. Although it is not so evident in Fig. 2b, there 

is a slight exponential decay of the total energy density distribution due to the dissipation of 
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energy caused by the gas loss factor. Figure 3 presents the energy density and energy flow 

comparison calculated by ESEM and SEM in a frequency f = 500 Hz. Energy density and flow 

calculated by ESEM and SEM match exactly. Although not shown here this comparison was 

made to other frequency values and the results were the same. 

Figure 2 – One-dimensional acoustic waveguide SEM element responses at frequency                

f = 500Hz: (a) acoustic pressure and particle velocity; (b) time-average potential,                

kinetic and total energy density  

 
(a) 

 
(b) 

Source: Authors 

Figure 3 – Comparison of ESEM and SEM one-dimensional acoustic waveguide element 

responses at frequency f=500Hz: (a) energy density; (b) energy flow 

 
(a) 

 
(b) 

 

Source: Authors 

Coupled Elements 

The coupled acoustic system consists of two one-dimensional acoustic waveguide (rigid 

wall ducts) with different geometry (cross section radius and length) or medium property (sound 

velocity, gas density and loss factor) connected each other. The system is harmonically excited at 

the left end and opened in the right end (unflanged). For the geometric discontinuity the duct 

dimensions for element 1 are R1 = 2.010-3 m and L1 = 1.8 m, while for element 2 are R2 = 4.010-

3 m and L2 = 4.2 m. Both elements contains air at 0ºC ( = 1.21 kg/m3; c = 343.0 m/s; and  = 

5.810-3) as acoustic medium. For the medium discontinuity the element 1 contains air at 0ºC (1 
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= 1.293 kg/m3, c1 = 331.6 m/s, 1 = 5.810-3), while the element 2 contains hydrogen at 0ºC (2 

= 0.09 kg/m3; c2 = 1269.5 m/s; and 2 = 8.810-3). Both elements have same geometric 

dimensions (R = 5.010-3 m and L = 6 m). The excitation and end conditions are the same as the 

single element problem. 

Figure 4 shows the frequency-averaged energy density and flow responses, calculated by 

ESEM and SEM, for two coupled elements with cross section area discontinuity in 1/3-octave 

frequency band with center frequency fc = 0.8 kHz. Figure 5 shows the same for fc = 8.0 kHz. 

Both methods present a typical plot of frequency-averaged energy density (Figs. 4a and 5a), which 

includes an energy decaying along the element length with a sudden step at the position of the 

cross section area change. Whereas, the energy flow plots (Figs. 4b and 5b) show a similar 

behavior without the step. 

 

Figure 4 – Cross section discontinuity by ESEM and SEM with fc = 0.8 kHz: (a) Energy 

density; (b) Energy flow 

 
(a) 

 
(b) 

Source: Authors 

 

Figure 5 – Cross section discontinuity by ESEM and SEM with fc = 8.0 kHz: (a) Energy 

density; (b) Energy flow 

 
(a) 

 
(b) 

Source: Authors 
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Figure 6 – Medium property discontinuity by ESEM and SEM with fc = 0.8 kHz: (a) Energy 

density; (b) Energy flow 

 
(a) 

 
(b) 

Source: Authors 

Figure 7 – Medium property discontinuity by ESEM and SEM with fc = 8.0 kHz: (a) Energy 

density; (b) Energy flow 

 
(a) 

 
(b) 

Source: Authors 

Nevertheless, a comparison between frequency-averaged energy density and flow 

responses by ESEM and SEM shows a mismatch at low frequency band (fc = 0.8 kHz), and a 

perfect agreement at high frequency band (fc = 8.0 kHz). Figure 6 and 7 show similar results for 

the two coupled elements with medium property discontinuity. Comparisons were made at 

different frequency bands, and the results are similar. 

FINAL REMARKS 

In this work, the thermal analogy proposed by Wohlever and Bernhard (1992) to model 

mechanical energy flow in structural systems is investigated for acoustic systems. Energy density 

and flow were derived from the classical lossy Helmholtz equation solution for harmonically 

excited duct. An extension of energy spectral element method to the acoustic one-dimensional 

waveguides is proposed. Predictions made with ESEM for one-dimensional acoustic waveguides 

are verified using an exact solution of the wave equation obtained by the spectral element method. 

Some examples are simulated and results obtained by ESEM and SEM are compared and 

discussed. The configurations treated consist of acoustic ducts composed of single element and 
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two coupled elements. The main divergences between the energy density and energy flow results 

obtained with SEM and ESEM stem from the validity limits of ESEM formulation and coupling 

relationships in the frequency band of interest. ESEM reaffirms to be suitable for high 

frequencies, and it produces good results when the analyses are performed inside the validity 

region for the method. 
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