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ABSTRACT 

This article reviews the role of bioinformatics approaches in drug discovery from medicinal plants, with 

an emphasis on the use of computational tools for the analysis of genomic, proteomic, and metabolomic 

data. These techniques facilitate the screening of bioactive compounds with therapeutic potential, 

optimizing the identification of new drug candidates. Methods such as molecular docking and molecular 

modeling are fundamental for predicting interactions between ligands and target proteins, supporting the 

rational development of new drugs. The article also discusses the importance of metabolic pathway 

analyses and molecular interaction networks in the selection of promising plant species. The combination 

of bioinformatics and phytochemistry emerges as a crucial strategy to accelerate the drug discovery 

process, reducing both costs and development time, with great potential to enhance medical therapies.  

Keywords: Computational analyses; Virtual screening; Molecular docking; Phytochemistry; New drugs. 
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INTRODUCTION  

 

The discovery of new drugs is a complex and time-consuming process, 

especially when it involves exploring the vast chemical diversity of medicinal plants. 

For millennia, people have relied on the medicinal properties of plants to treat various 

diseases. According to a report from the World Health Organization (WHO), around 

80% of the global population uses traditional medicine as part of their healthcare 

(Michelle, Rani, Husain, 2020). Many of these therapies involve the use of extracts and 

active compounds derived from medicinal plants (Craig, 1999). 

The oldest written evidence of plant use for health purposes was found on a 

Sumerian clay tablet from Nagpur, approximately 5,000 years old. Other historical 

written records have been found in Mesopotamia, Egypt, and Greek and Islamic 

civilizations (Petrovska, 2012). Plants play a fundamental role due to their metabolites, 

present in about 250,000 species. 

These plants not only share primary metabolites, essential for basic cellular 

functions, but also produce a wide range of phytochemicals, known as secondary 

metabolites, which play roles in interactions between organisms, as highlighted by 

Verpoorte (1998). 

In this context, the objective of this review is to discuss the application of 

bioinformatics approaches in the discovery of new drugs derived from medicinal plants, 

highlighting how these techniques can accelerate and optimize the identification and 

development of bioactive compounds with therapeutic potential, contributing to 

innovation in modern medicine. 

 
MEDICINAL PLANTS AND THE NEED FOR NEW DRUGS 

 

Natural compounds are chemical substances produced by living organisms 

through primary and/or secondary metabolic pathways, often exhibiting useful 

pharmacological activities for treating various diseases (Kerwin, 2012; Woldeyes et al., 

2012). These natural compounds can be obtained through chemical synthesis or semi-

synthesis and frequently serve as starting points in drug discovery, where analogs are 

synthesized to achieve greater purity, efficacy, potency, and safety (Li, Yeung, 2013; 

Raafat, 2013; Oliveira, Piva, Lung, 2015), ultimately benefiting human health (Figure 

1). 
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Figure 1 – Schematic representation of the use of medicinal plants in drug development and 

their application in human health through secondary metabolites. 

 

 

 

 

 

 

 
 Source: The authors (2024). 

 

During the 19th century, the discovery and isolation of compounds, particularly 

alkaloids, which could be separated relatively easily from other organic compounds, 

represented a significant milestone in the history of medicine. This advance enabled the 

use of pure substances in Western medicines, resulting in safer and more effective 

dosages, marking a notable improvement over herbal medicine prescriptions. With 

advancements in chemistry, the ability to produce semi-synthetic and synthetic 

compounds emerged as a significant advantage in the early 20th century. This 

advantage comes from the ability to produce the necessary compounds in sufficient 

quantities through the development of synthetic procedures (Suntar, 2020). 

The use of plants for therapeutic treatments is preferable in many cases, as plant 

materials are more accessible and economical compared to synthetic drugs, especially in 

certain countries. Approximately one-third of the population in the United States and 

European countries also rely on herbal remedies for healthcare. It is estimated that 

around 70,000 plant species are used to treat diseases, yet only about 15% of these 

species have been investigated for potential medical uses. Despite this low percentage, 

approximately 25% of conventional medicines currently used in modern medicine are 

plant-derived (Fabricant, Farnsworth, 2001; Yuan et al., 2016). This suggests there are 

still opportunities for further research into natural sources that could be explored for 

medical purposes. 

Considering the existence of several diseases for which there is still no effective 

medication available, it becomes imperative to conduct drug discovery studies. 

Research and development are essential to driving the investigation of new drugs by 

pharmaceutical industries (Toole, 2012). 
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Before a new drug can be registered, many compounds require detailed 

investigation. Screening methods used in the search for effective plant compounds may 

include the random selection of plant materials or the identification of potential 

candidates through specialized databases for this purpose (Vuorela et al., 2004). 

However, these methods are expensive, time-consuming, and have low productivity, 

often resulting in a low success rate. To promote therapeutic innovation, high-

throughput screening methods, genomics, and combinatorial chemistry technologies are 

utilized (Suntar, 2020). 

However, the growing interest in alternative and complementary medicine is 

becoming increasingly prominent, especially in cultures where traditional healing 

practices are highly revered and valued (Agbor; Naidoo, 2016). This phenomenon is 

driving significant expansion in research and development of plant-derived medicines, 

with the goal of complementing conventional healthcare approaches. 

The research and development of plant-based medicines are being driven by 

several factors, including the growing recognition of biodiversity’s importance in 

medicine, advances in extraction and bioactive compound analysis techniques, genomic 

analyses, and market demand for more natural and less invasive therapeutic options 

(Bilal; Iqbal, 2020). These plant-derived medicines are not only considered alternatives 

to conventional therapies but also as complements that can enhance the efficacy of 

existing treatments, reduce adverse side effects, and provide additional therapeutic 

options for a variety of health conditions. 

Thus, with the rise in interest in alternative medicine, there is a growing demand 

for new treatments derived from medicinal plants, highlighting the importance of 

research and development of drugs based on natural sources. By integrating knowledge 

of medicinal plants with the capabilities of bioinformatics, a promising horizon opens 

for the identification and development of new nature-based drugs, thereby expanding 

the therapeutic options available to modern medicine. 

 
BIOINFORMATICS: CONCEPTS AND SOFTWARE 

 

Bioinformatics is an interdisciplinary field that combines biology with 

informatics, using computational techniques to analyze and interpret complex biological 

data (López-López, Bajorath, Medina-Franco, 2020). It involves the development and 

application of computational methods to collect, organize, store, analyze, and visualize 

biological information such as DNA sequences, proteins, molecular structures, and gene 
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expression. Bioinformatics is crucial in the era of genomics, proteomics, and other 

"omics" fields, enabling the understanding of biological processes at both molecular and 

systemic levels (Tolani et al., 2021). 

The role of bioinformatics in biological data analysis is multifaceted and 

comprehensive. It offers tools and algorithms to compare genomic and proteomic 

sequences, identify genes and regulatory elements, predict protein structures, and model 

molecular interactions (Tolani et al., 2021). Additionally, bioinformatics is essential for 

the analysis of gene expression data, metagenomics, phylogenetics, and epidemiology, 

providing valuable insights into biological diversity, evolution, the functioning of 

biological systems, and relationships between organisms (Diniz, Canduri, 2017). 

In a broader context, bioinformatics supports drug discovery, agricultural 

biotechnology, biodiversity conservation, and much more. Its application is 

fundamental for understanding the genetic basis of diseases, identifying therapeutic 

targets, developing vaccines, improving crop varieties, and conserving endangered 

species (Diniz, Canduri, 2017) (Figure 2). Therefore, bioinformatics not only drives 

scientific research but also has a direct impact on human health, sustainable agriculture, 

and environmental conservation. 

 
Figure 2 –  Examples of bioinformatics applications. 

Source: The authors (2024). 
  

With the emergence of genetic sequencing techniques, particularly the growing 

use of Next-Generation Sequencing (NGS), it has become possible to explore and 

interpret biological data through bioinformatics. One of the most significant areas is 

genomic sequence analysis, which involves identifying and comparing DNA and RNA 

sequences to understand the genetic structure, evolution, and function of genes (Ogbe, 

Ochalefu, Olaniru, 2016). Methods such as sequence alignment, genome assembly, and 
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genomic annotation are fundamental to this analysis, providing insights into genetic 

diversity and gene regulation mechanisms (Hawkins, Hon, Ren, 2010). 

Another key tool in bioinformatics is molecular modeling, which uses 

computational techniques to predict the three-dimensional structure of proteins and 

other biological molecules (Dorn et al., 2014). Molecular modeling allows researchers 

to understand how proteins interact with other molecules, such as ligands or substrates, 

and provides essential information for drug design and protein engineering with specific 

functions. Methods like molecular docking and molecular dynamics are widely used to 

simulate and investigate complex molecular interactions (Naqvi et al., 2018). 

Furthermore, the prediction of biological activity is an important area of 

bioinformatics, aimed at forecasting the functional properties and biological effects of 

molecules, such as chemical compounds or proteins. This involves the use of machine 

learning algorithms and statistical modeling techniques to analyze large datasets and 

identify patterns that may be correlated with specific biological activities (Walker, 

Clardy, 2021). Predicting biological activity is crucial for drug development, 

computational toxicology, and the discovery of biomarkers for disease diagnosis. These 

computational approaches are essential for managing the increasing complexity of 

biological data and accelerating scientific and technological progress in various fields of 

biology and medicine. 

Thus, bioinformatics provides the computational foundation for analyzing large 

genomic, proteomic, and metabolomic datasets, enabling the identification of genes, 

proteins, and metabolic pathways related to bioactive compounds in plants. This 

analysis allows for a more targeted approach in selecting plant species with therapeutic 

potential, maximizing efficiency in identifying active compounds. By using 

bioinformatics tools to understand the molecular interactions and mechanisms of action 

of compounds found in plants, researchers can expedite the discovery of new 

therapeutic agents. 

 
SELECTION OF PLANT SPECIES AND IDENTIFICATION OF ACTIVE 

COMPOUNDS 
 

Bioinformatics can be applied to the selection of promising plant species based 

on their genomes, metabolites, and traditional medicinal properties (Ma et al., 2020). 

Comparative genomic analysis helps identify genes associated with the production of 

bioactive compounds in various plant species, aiding in the selection of candidates with 
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therapeutic potential (Semenzato et al., 2022). Furthermore, bioinformatics facilitates 

the analysis of metabolites present in plants, revealing their chemical composition and 

pharmacological potential. 

By integrating genomic, metabolomic, and traditional medicinal data, 

bioinformatics offers a holistic approach to selecting plant species with therapeutic 

potential (Mawalagedera et al., 2019). This approach enables researchers to identify 

patterns and correlations between genetic and metabolic characteristics, allowing them 

to prioritize species with a higher likelihood of producing desirable bioactive 

compounds. Moreover, bioinformatics enables the development of predictive models to 

estimate the biological activity of plant compounds based on their chemical structure 

and molecular interactions (Sharma, Sarkar, 2013). Various tools can be applied to 

discover the biological activity of sequences for different purposes, including 

identifying antimicrobial, antiviral, and antifungal activities (Calderone et al., 2014). 

Through computational simulations, it is possible to analyze the three-

dimensional conformation of compounds and predict their biological activity, 

contributing to the understanding of their mechanisms of action. Additionally, the 

analysis of genomic and metabolomic databases helps identify genes and metabolic 

pathways related to the synthesis of bioactive compounds, as well as map metabolic 

pathways to understand the biosynthetic processes involved in their production. These 

computational approaches allow for a more efficient screening of plant species and the 

identification of potential targets for experimental studies (Fitzgerald, Heinrich, Booker, 

2022). 

It is worth noting that the development of new drugs is a complex, time-

consuming, and expensive process. The time from the discovery of a new drug to its 

clinical application is approximately 12 years, involving investments of over 1 billion 

dollars (Katiyar et al., 2012). Therefore, methods that accelerate this process can bring 

benefits not only in economic terms but also in reducing the time required for products 

to reach the market. In this context, bioinformatics has emerged as a powerful ally in the 

drug discovery and development process. Another critical point is the urgency of 

developing a vaccine for SARS-CoV due to the rapid spread of the pandemic (Waman 

et al., 2021). Bioinformatics played a fundamental role in the rapid sequencing of the 

virus, the identification of therapeutic regions, and vaccine development, significantly 

reducing the time between research and its availability to the public. 
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ANALYSIS OF METABOLIC PATHWAYS AND INTERACTION NETWORKS 

 

Plants have the ability to produce a wide array of chemical compounds, 

significantly greater than that of other living organisms, such as mammals. Medicinal 

plants, in particular, are a rich source of organic compounds that hold great promise for 

various biotechnological applications (Saito & Matsuda, 2010). 

Some of these compounds include alkaloids, anthocyanins, and flavonoids, 

which are used for a variety of purposes. These range from drug production (Zhao, Ge, 

& Miao, 2024), analysis of key metabolites associated with oxidative damage for 

therapeutic applications (Yang et al., 2024), to potential drugs for controlling 

depression, cancer, and diabetes (Veeramohan et al., 2023). 

These advancements in medicinal plants for drug production have been made 

possible due to progress in genomics and transcriptomics, which have revolutionized 

research on plants and important crop species (Chen et al., 2024). However, 

metabolomics has been the most transformative tool for analyzing the chemical 

compounds produced by plants. This robust analytical technique focuses on the 

diversity of metabolites plants produce (Rai et al., 2017; Sharma & Yadav, 2022). 

One of the primary goals of metabolomics is to link a plant’s chemical 

constituents with its therapeutic value. Understanding the regulatory cascades related to 

plant metabolism is considered the first step toward generating genetically edited plants 

that can produce compounds beneficial to humanity (Babar et al., 2017; Ma et al., 

2020). 

A variety of laboratory and computational tools are available for elucidating 

these metabolic compounds, including chromatographic techniques (McCullagh & 

Probert, 2024) and spectrometry techniques (Deschamps et al., 2024). These include 

Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass 

Spectrometry (LC-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform 

Infrared Spectroscopy (FT-IR), and more, along with bioinformatics and 

chemoinformatics tools (Santamaria & Pinto, 2024; Kumar et al., 2024). 

Currently, there are numerous tools available for metabolite analysis aimed at 

understanding the structural and functional aspects of these compounds in medicinal 

plants. Data mining and interpretation is one of the most interesting fields of 

bioinformatics (Babar et al., 2017). These computational techniques are growing rapidly 

and contributing to drug discovery by evaluating genes and their behavior in relation to 
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the expression of bioactive compounds linked to the pathophysiology of medical 

interest diseases (Sharma & Yadav, 2022). 

While there are several databases like Ensembl (Aken et al., 2017), GOLD 

(Mukherjee et al., 2016), TAIR (Poole, 2007), RGI (Kwatra, 2021), Phytozome 

(Goodstein et al., 2012), and GDR (Jung et al., 2007), all of which are considered 

valuable resources for the biosynthesis and functional studies of these plant-produced 

metabolites, other tools are also available to further our understanding of these 

compounds (Table 1). 

 

Table 1 – List of tools used in metabolomics analysis. 

Tool Name Database Reference 

BioCyc https://biocyc.org/ Karp et al., 2015. 

Diagramas de Venn https://www.nia.nih.gov/research/labs/vennplex Cai et al., 2013 

Galaxy-M https://github.com/Viant-Metabolomics/Galaxy-M Davidson et al., 2016. 

GenePattern https://www.genepattern.org/#gsc.tab=0 Reich et al., 2006. 

GNPS https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp Schmid et al., 2021. 

HumanCyc  https://humancyc.org/ Romero, 2012. 

IMPaLA http://impala.molgen.mpg.de/ Kamburov et al., 2011 

KEGG https://www.kegg.jp/ Kanehisa, 2026 

MAVEN2 https://github.com/eugenemel/maven/releases/latest Seitzer; Bennett; 

Melamud, 2022. 

MetAssign https://mzmatch.sourceforge.net/MetAssign.php Gardinassi et al., 

2017. 

MetaCyc https://metacyc.org/ Shrestha et al., 2022. 

Metscape3 https://metscape.med.umich.edu/calculator.html Basu et al., 2017. 

MetPA https://metabolomicscentre.ca/software-

databases/software-data-analysis/ 

Xia and Wishart, 

2010a. 

MetExplore https://metexplore.toulouse.inrae.fr/metexplore-portal/ Cottret et al., 2010. 

MetaboAnalyst https://www.metaboanalyst.ca/ Xia; Wishart, 2016. 

Metabox https://metsysbio.com/tools_protocols/metabox-2-0/ Wanichthanarak et al., 

2024. 

MSEA https://github.com/bsml320/MSEA?tab=readme-ov-file Xia; Wishart, 2010b. 

MS-DIAL https://systemsomicslab.github.io/compms/msdial/main.ht

ml 

Tsugawa et al., 2015 

mzMine https://sourceforge.net/projects/mzmine/ Du et al., 2020. 

OpenMS https://openms.de/ Alka et al., 2019. 

RECON2 https://github.com/mcisb/mcisb-recon Swainston et al., 

2016. 

Reactome https://reactome.org/ Bohler et al., 2016. 

Workflow4Metabolomi

cs 

https://workflow4metabolomics.org/ Giacomoni et al., 

2015. 

XCMS https://xcmsonline.scripps.edu/landing_page.php?pgconten

t=mainPage 

(Mahieu; 

Genenbacher; Patti, 

2016) 

 Source: The authors (2024). 

 

Metabolomics is the leading field in omics sciences that has been contributing to 

the understanding of the diversity and function of metabolites and bioactive compounds 

in various medicinal plants (Rai, Saito, Yamazaki, 2017). In this context, new tools are 

being developed with the primary aim of providing new insights into the mode of action 

https://github.com/eugenemel/maven/releases/latest
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and activity of these medicinal plants, as demonstrated in Table 1 (Gonulalan, Nemutlu, 

Demirezer, 2019). 

 

VIRTUAL SCREENING AND DRUG DEVELOPMENT 

 

In the quest for new medications, increasingly accurate computational tools have 

been developed. Without the need to dissect animals, computational simulations are 

used to calculate the numerous biological consequences and potential toxicity of a 

prospective drug (Sharma and Yadav, 2022). These simulations allow only the most 

promising compounds discovered through virtual screening to proceed to in vivo testing 

(Mensa et al., 2023; Sharma and Yadav, 2022). For in vivo tests, for example, it is 

necessary to determine the receptor binding site of the drug to be tested, and this 

determination can be predicted using software such as Computer-Aided Drug Design 

(CADD) (Hussain et al., 2021; Sharma and Yadav, 2022). By identifying potential 

binding sites, CADD allows for the selection of compounds with the highest biological 

activity (Sharma and Yadav, 2022). 

Virtual screening strategies play an essential role in identifying plant compounds 

with potential pharmacological activity. Several studies have demonstrated the 

applicability of methods such as molecular docking, bioinformatics, and in silico drug 

design to select natural phytocompounds for therapeutic purposes (En-nahli et al., 2023; 

Erlina et al., 2022; Shreya et al., 2023; Sultana et al., 2023). For instance, in silico 

methods were used to select possible phytochemical compounds from medicinal plants 

with potential inhibitory action against COVID-19 (Firouzi and Ashouri, 2023). 

Therefore, computational approaches not only speed up the drug discovery process but 

also provide more cost-effective and efficient means of identifying bioactive plant 

compounds for pharmacological applications (Kotadiya, 2023; Sultana et al., 2023). 

In molecular docking studies, for example, pharmaceutical and toxicity 

assessments are conducted using tools such as SwisDock and SwissADME, which can 

analyze the therapeutic potential of plant-derived compounds such as Durva, Bael, 

Custard apple, Moringa, and Kokum (Gupta et al., 2023). Moreover, computational 

tools enable the discovery of small antiviral molecules from plants to combat infectious 

diseases like COVID-19 through molecular docking and molecular dynamics 

simulations targeting specific viral proteins (Halder et al., 2023). 

Among the most widely used tools are GOLD (Nurisso et al., 2012) and 

AutoDock Vina (Trott and Olson, 2010), applied in molecular docking to predict 



CLIUM.ORG | 113 

 

interactions between proteins and ligands. Schrödinger Suite offers an integrated 

interface combining various functionalities, facilitating large-scale virtual screening 

(Bhachoo and Beuming, 2017). MOE (Molecular Operating Environment) is a robust 

platform that supports both docking and molecular modeling and dynamics, essential 

for refining potential drugs (Vilar et al., 2008). Databases like ZINC (Irwin et al., 2012) 

and ChEMBL (Willighagen et al., 2013) provide compounds ready for virtual 

screening. SwissDock (Bitencourt-Ferreira and de Azevedo, 2019) and GLIDE 

(Repasky et al., 2007) assist in pharmacophore identification and molecular docking, 

while software such as GROMACS (Lindahl et al., 2001) and RDKit (Bento et al., 

2020) complement the process with molecular dynamics simulations and 

cheminformatics analyses, supporting the rational design of new drugs (Table 2). 

 

Table 2 – Principais ferramentas utilizadas para triagem virtual e desenvolvimento de fármacos. 

 Source: The authors (2024). 

Software Description Applications Reference 

AutoDock Vina 

 

Molecular docking software that 

predicts the binding of small 

molecules to macromolecules. 

Virtual screening of ligands, 

drug design, molecular 

docking. 
Trott and Olson, 

2010 

Schrödinger 

Suite 

 

Set of tools for molecular modeling 

and drug development. 

Virtual screening, docking, 

molecular dynamics, protein 

modeling. 
Bhachoo and 

Beuming, 2017 

GOLD 

 

Molecular docking tool that uses 

genetic algorithms to predict protein-

ligand binding. 
Virtual screening, drug 

design, molecular docking. 
Nurisso et al., 

2012 

MOE 

(Molecular 

Operating 

Environment) 

Integrated platform for molecular 

modeling and drug development. 

Molecular modeling, docking, 

virtual screening, molecular 

dynamics. Vilar et al., 2008 

GLIDE 

 

Molecular docking software known 

for its high accuracy in predicting 

protein-ligand interactions. 
Virtual screening, drug 

design, molecular docking. 
Repasky et al., 

2007 

ZINC Database 

 

Database of chemical compounds 

prepared for molecular docking. 
Virtual screening, drug 

design, molecular docking. Irwin et al., 2012 

ChEMBL 

 

Database of bioactive compounds 

with known activities. 

Virtual screening, drug 

discovery, bioactivity 

analysis. 
Willighagen et 

al., 2013 

SwissDock 

 

Online platform for molecular 

docking that uses the EADock DSS 

software. 
Virtual screening, molecular 

docking, drug design. 

Bitencourt-

Ferreira and de 

Azevedo, 2019 

RDKit 

 

Set of tools for cheminformatics, 

molecular modeling, and virtual 

screening. 
Molecular modeling, virtual 

screening, drug design. Bento et al., 2020 

GROMACS 

 

Software package for molecular 

dynamics simulations of 

biomolecules. 

Molecular dynamics, protein 

stability and flexibility 

studies. 
Lindahl et al., 

2001 



CLIUM.ORG | 114 

 

 

Virtual screening accelerates the identification of potential drug candidates by 

offering a cost-effective and efficient pathway for new therapeutic discoveries. Studies 

have used these techniques to identify potential therapeutic targets for diabetes mellitus 

(Abdullah et al., 2023), cancer treatment (Rodosy et al., 2024), allosteric modulators 

(Jiang et al., 2023), involvement in apoptosis (Vong et al., 2022), and the development 

of antiviral drugs against SARS-CoV-2 (Parihar et al., 2022). 

By analyzing phytochemical compounds through molecular docking, evaluating 

pharmacokinetic behavior, and conducting molecular dynamics simulations, it is 

possible to predict the affinity of ligands for target proteins, understand protein-ligand 

interactions, and estimate the stability and efficacy of potential drug candidates. These 

computational methodologies provide valuable insights into the mechanisms of action 

of compounds, aiding in the identification and development of new drugs with 

therapeutic potential. 

Molecular modeling and simulation of ligand-receptor interactions allow for the 

prediction of interactions between plants and drugs, as well as refining drug design and 

detecting potential therapeutic targets. Several studies have already used 

pharmacokinetic analysis, molecular docking, and molecular dynamics simulations to 

estimate the binding affinity of compounds to target proteins, such as EGFR in cancer 

treatment (Rodosy et al., 2024), apoptosis-related proteins in studies with piperine 

(Vong et al., 2022), and the insulin receptor in the discovery of antidiabetic drugs 

(Abdullah et al., 2023). In these studies, molecular dynamics simulations have proven to 

be an excellent tool for refining receptor-ligand complexes, increasing the precision of 

drug binding modes and assisting in the development of potential drugs from plant 

sources (Kapla et al., 2021). Therefore, these tools are fundamental in accelerating drug 

discovery and enhancing its efficiency. 

 
CHALLENGES AND FUTURE PERSPECTIVES 

The main challenges in the discovery of plant-derived drugs include the 

complexity of natural product structures, as well as the slow screening methods and the 

limited identification of efficient phytocompounds due to the reliance on in vitro and in 

vivo tests (Rallabandi et al., 2020; Sultana et al., 2023). In this context, bioinformatics 

facilitates this discovery with methods such as pharmacophore modeling, molecular 
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docking, and molecular dynamics simulations for initial screening and characterization 

of anticancer phytocompounds (Iwaloye et al., 2023; Satpathy, 2001). 

The isolation of bioactive phytochemicals from plants has been a promising 

strategy in the development of therapies against infectious diseases and metabolic 

disorders, and computational tools enhance the efficiency of this process (Khan et al., 

2022). Ethnopharmacological approaches introduce polypharmacology, allowing natural 

products to target multiple human physiological pathways for enhanced efficacy (Nasim 

et al., 2022). The future of drug discovery lies in the integration of multi-omics data and 

the development of new computational tools. Advanced multi-omics technologies allow 

for a comprehensive understanding of disease mechanisms and the identification of 

therapeutic targets (Bouhaddani et al., 2023; Rakshit et al., 2023). The integration of 

omics data, such as genomics, transcriptomics, and proteomics, enables the exploration 

of new treatment options (Rakshit et al., 2023). 

Innovative in silico methods assist in predicting drug-induced proteomic profiles 

and phenotypes, favoring compound screening and systems pharmacology (Wu et al., 

2023). Integrated computational tools improve the analysis of multi-omics data, 

enabling personalized medicine strategies and accelerating drug discovery (Cominetti et 

al., 2023; Rao et al., 2022). These advances facilitate drug development and also create 

opportunities for repurposing existing compounds for new therapeutic uses. 

 
CONCLUSION 

 

Virtual screening tools and computational simulations play a crucial role in 

accelerating the drug discovery process, offering an efficient and cost-effective 

approach. By integrating techniques such as molecular docking, molecular dynamics, 

and pharmacokinetic modeling, it is possible to predict protein-ligand interactions, 

optimize drug candidates, and identify new therapeutic targets. The use of multi-omics 

data and advanced bioinformatics tools expands the possibilities for developing more 

effective and personalized treatments. These technological advances have the potential 

to transform drug development, opening new opportunities for innovative therapies, 

especially from natural compounds. 
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