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ABSTRACT 

The goal of this study is to assess the application of Multilayer Perceptron Artificial Neural Networks in 

fault classification within photovoltaic panels, focusing on key characteristics such as the number of 

neurons and layers, activation functions, training techniques, and the resulting accuracy. The study employs 

a comparative analysis approach, examining various characteristics and hyperparameters applied to 

Multilayer Perceptron Artificial Neural Networks for fault classification in photovoltaic panels. The 

research methodology involves reviewing publications from the past decade to gather data on these 

characteristics and their impact on fault analysis in photovoltaic generation systems. This study contributes 

to the originality of the field by providing a comprehensive comparison of various parameters and 

techniques used in Multilayer Perceptron Artificial Neural Networks for fault classification in photovoltaic 

panels. The findings offer valuable insights for researchers and practitioners in the renewable energy sector, 

aiding in the development of more efficient and reliable fault diagnosis systems for photovoltaic generation. 

Keywords: Multilayer Perceptron; Artificial Neural Network; Photovoltaic; Fault Classification.  

 

 

RESUMO 

 
O objetivo deste estudo é avaliar a aplicação de Redes Neurais Artificiais Multicamadas Perceptron na 

classificação de falhas em painéis fotovoltaicos, com foco em características-chave, como o número de 

neurônios e camadas, funções de ativação, técnicas de treinamento e a precisão resultante. O estudo 

emprega uma abordagem de análise comparativa, examinando várias características e hiperparâmetros 

aplicados a Redes Neurais Artificiais Multicamadas Perceptron para a classificação de falhas em painéis 

fotovoltaicos. A metodologia de pesquisa envolve a revisão de publicações da última década para reunir 

dados sobre essas características e seu impacto na análise de falhas em sistemas de geração fotovoltaica. 

Este estudo contribui para a originalidade do campo, fornecendo uma comparação abrangente de vários 

parâmetros e técnicas usadas em Redes Neurais Artificiais Multicamadas Perceptron para a classificação 

de falhas em painéis fotovoltaicos. Os resultados oferecem insights valiosos para pesquisadores e 

profissionais no setor de energia renovável, auxiliando no desenvolvimento de sistemas de diagnóstico de 

falhas mais eficientes e confiáveis para a geração fotovoltaica. 

Palavras-chave: Perceptron de Multicamadas; Rede Neural Artificial; Fotovoltaica; Classificação de 

Faltas. 
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INTRODUCTION  

The use of computational modeling plays a highly significant role in the 

development, optimization, and enhancement of renewable energy systems at various 

generation scales (FILHO at al, 2022; NASCIMENTO FILHO at al, 2018; MURARI at 

al, 2020; SILVA at al, 2021). The process of capturing energy from solar radiation has 

evolved significantly through the application of various optimization techniques, which 

can enhance the efficiency and reliability of solar energy installations, thereby 

contributing to a more sustainable future (NASCIMENTO FILHO at al, 2017; 

NASCIMENTO FILHO at al, 2021; NASCIMENTO FILHO at al, 2022; DE OLIVEIRA 

at al, 2023). Furthermore, with the increasing proliferation of artificial intelligence 

techniques, it is anticipated that the optimization process will be further maximized. 

In the late 1930s, the first digital computers emerged. and during earlier 1940s, 

Artificial Neural Networks (ANNs) were being conceived. The first recognized work in 

the field of Artificial Intelligence was “A Logical Calculus of the Ideas Immanent in 

Nervous Activity”, produced by Warren McCulloch and Walter Pitts in 1943. This work 

drew inspiration from the neural system to perform calculations with the implementation 

of logical expressions (MCCULLOCH, PITTS, 1943). 

In the following decade, the principles of the Perceptron were defined at the 

Cornell Aeronautical Laboratory by Frank Rosenblatt in the article titled “The 

Perceptron: A Probabilistic Model for Information Storage and Organization in the 

Brain”. The Perceptron is a simple architecture of an Artificial Neural Network, 

representing an artificial neuron that not only operates with digital logic but also computes 

input and output data in real numbers (ROSENBLATT, 1958).  

To address certain application problems of the Perceptron networks, such as non-

linear classification and exclusive or (XOR) logic problems, the Multilayer Perceptron 

(MLP) neural network was proposed in the 1960s. The MLP gained popularity in the 

1980s with the increase in computer processing power and the introduction of the 

backpropagation algorithm (RUMELHART, HINTON, WILLIAMS, 1985). The training 

technique for MLP, known as backpropagation, was popularized through the book 

“Parallel Distributed Processing”, published in 1986 by Rumelhart and McClelland. In 

Fig 1 is there is the important milestones in MLP timeline. 
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Fig 1 - Important milestones in MLP timeline 

 

Source: Own Authorship 

 

The MLP has been applied in various fields using machine learning techniques, 

including in the domain of electrical systems for the analysis and diagnosis of faults in 

photovoltaic generation systems (BASNET; CHUN; BANG, 2020; BHARATH; 

HAQUE; KHAN, 2018; CHINE et al., 2016; CHOUAY; OUASSAID, 2017; DA COSTA 

et al., 2019; DJALAB et al., 2020; LAZZARETTI et al., 2020; RAO; SPANIAS; 

TEPEDELENLIOGLU, 2019; SABRI; TLEMÇANI; CHOUDER, 2019; VIEIRA, 

2021). 

Photovoltaic generation has proven to be a significant technology within the realm 

of renewable energy generation, attracting an estimated global value of $298 billion, 

representing 60% of the total global investment in renewable energy (IRENA, 2023). In 

the year 2021 alone, there was an addition of 138 gigawatts (GW) of installed capacity 

(IRENA, 2023). For comparison, the installed capacity in the entire National 

Interconnected System in Brazil in the year 2022 is 176 gigawatts (GW) (ONS, 2022). It 

can be observed in 2021, the added wind generation capacity worldwide was equivalent 

to 78% of the total installed capacity of the Brazilian power generation system in 2022. 

In Brazil, photovoltaic generation has also been gaining importance, currently accounting 

for 12.8% of the total installed capacity, with a perspective to reach 15.2% by 2026 (ONS, 

2022). 

The increasing presence of renewable energy generation in electrical systems has 

posed a challenge not only to the stability and systemic operation of electrical grids but 

also to conventional protection systems. Protections using traditional measured-based 

protection like overcurrent protection and current differential protection can result in 

protection maloperations (CAO et al., 2023). This challenge arises from the extensive use 
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of power electronics in this type of generation, leading to atypical characteristics and 

behavior during faults. These atypical characteristics include low short-circuit current 

contribution, which affects the sensitivity of conventional protections, unusual voltage 

response behavior, and the presence of negative sequence component sources.  

Instead of relying on traditional protection systems, researchers have explored 

neural network techniques, such as Multilayer Perceptrons, to detect faults in photovoltaic 

panels. Numerous books and articles have documented the findings of these studies, 

offering alternative approaches for improving fault detection in this context. This type of 

protection has the capability to detect faults in photovoltaic panels before the triggering 

of traditional protection, enabling the anticipation of necessary corrections before the 

panel presents more severe damage. 

In this article, we compare the characteristics applied to Multilayer Perceptron 

Artificial Neural Networks for fault identification in photovoltaic panels. This include 

defining the number of neurons and layers, activation functions, training techniques, and 

the achieved accuracy. These comparisons were be based on documented research 

published over the 2014 to 2021. 

 

CHARACTERISTICS EMPLOYED IN THE MODELS 

An example of a Multilayer Perceptron Artificial Neural Network is represented 

in Fig 2. In this network, we have the variable matrix 𝑋, in this case formed by 𝑥1, 𝑥2, 

and 𝑥3, connected to the input layer. The output variables 𝑦1 and 𝑦2 form the matrix 𝑌, 

which is calculated by the output layer. There can be as many input and output variables 

as necessary. The input and output layers will have the same number of neurons as the 

number of input and output variables, respectively. The hidden layers are situated 

between the input and output layers and can have as many neurons as defined by the 

application. Weight matrices 𝑊 and Bias vector 𝐵 are used, calculated during the training 

phase, along with the activation function 𝜑 to compute values to be passed from the 

previous layer to the next one. The matrix 𝑊 and the vector 𝐵 constitute the parameters 

of the neural network. 
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Fig 2 - MLP Example 

 

 

Source: Own Authorship 

 

There is no fixed rule for determining the number of hidden layers to be applied 

or the number of neurons in each layer. As an illustrative example, in the figure, it is 

considered a first hidden layer with four neurons and a second hidden layer with three 

neurons were represented. 

This study considers articles published between 2014 and 2021, which employed 

MLP for the diagnosis of short-circuits in photovoltaic panels based on values such as 

instantaneous current and voltage in direct current, temperature, irradiance, and power. 

Tab 1  records, for each article, the number of hidden layers, the number of neurons per 

hidden layer, activation function, training technique and achieved accuracy. 

 

Tab 1 - Comparison of MLP characteristics 

Article 
Hidden layers/ 

Neurons Quantity 

Activation 

Function  

Técnica de 

Treinamento 
Accuracy 

(CHINE et al., 2016) (13,13) Sigmoidal Levenberg-Marquardt 90.3% 

(CHOUAY; OUASSAID, 2017) (40) Sigmoidal Levenberg-Marquardt 94.1% 

(BHARATH; HAQUE; KHAN, 2018) (12) NA Levenberg-Marquardt 98.2% 

(SABRI; TLEMÇANI; CHOUDER, 2019) (25) Sigmoidal Levenberg-Marquardt 97.7% 

(RAO; SPANIAS; TEPEDELENLIOGLU, 2019) (6,6,6) Tanh Levenberg-Marquardt 99.7% 

(DA COSTA et al., 2019) (33) NA NA 99.65% 

(LAZZARETTI et al., 2020) (21) ReLU ADAM 95,44% 

(BASNET; CHUN; BANG, 2020) (8,8,8) ReLU ADAM 100% 

(DJALAB et al., 2020) (10) Sigmoidal NA 94.0% 

(VIEIRA, 2021) (35) tanh Levenberg-Marquardt 99.1% 

Source: Own Authorship 

 

The considered articles mentioned which characteristics were used but don’t 

explicitly state the reasons behind the chosen configurations for the models. Some articles 



CLIUM.ORG | 529 

 

did not even mention certain characteristics adopted in the model, which is recorded in 

Table 1 with cells marked as “NA” (Not available in the article). 

 

 Fig 3 – Relation between Accuracy and Network Characteristics. (a) Accuracy according to 

Number of layers, (b) Accuracy according to Number of Neurons, (c) Accuracy according to 

activation functions, (d) Accuracy according to training method.  

 

Source: Own Authorship 

 

To facilitate the analysis of the model characteristics, scatterplots were 

constructed in Fig 3 based on the data from Table 1. These plots depict the relationship 

between the accuracy achieved by the models, on a scale from 0 to 1, and the main 

characteristics of the MLP. These graphs support an initial analysis and observations 

regarding the relationship between accuracy and network characteristics. The next session 

discusses the relation between accuracy and artificial neural network hyper-parameters 

number of layers, number of neurons, activation function and training methods. 

 

MODELS CHARACTERISTICS RESULTS AND DISCUSSION  

Some articles employed an iterative technique to determine the number of neurons 

in the model with the aim of achieving the highest accuracy. In (BHARATH; HAQUE; 

KHAN, 2018) , networks were trained starting from 4 neurons up to 40 neurons in 

intervals of 4, and the network with 12 neurons was selected. In (DA COSTA et al., 2019), 

the iteration began with 10 neurons up to 100 neurons, and the network with 33 neurons 

was chosen. An iterative technique was also employed to define the number of neurons 
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in (LAZZARETTI et al., 2020), adopting a range from 5 to 30 neurons, with 21 neurons 

being selected. 

In all the mentioned iterative cases, only one hidden layer was employed. The 

majority of the considered articles utilized a single hidden layer, following the stance of 

certain sources like (DE VILLIERS; BARNARD, 1993), which conducts a comparison 

between neural networks with one and two hidden layers and concludes that there is no 

reason to use two hidden layers, and preference should be given to neural networks with 

just one hidden layer. 

On the other hand, it can be observed that the models studied with two or three 

hidden layers consistently use the same number of neurons per layer, which may not be 

the optimal solution for multilayer models. In (MAIOROV; PINKUS, 1999), it is 

suggested that for a two-layer neural network model with hidden functions, one should 

consider using 2𝑑 + 1 neurons in the first layer and 4𝑑 + 3 neurons in the second layer, 

where 𝑑 represents the number of input variables. 

As seen in the graph “Number of Neurons x Accuracy” in Fig 3, there is no clear 

direct relationship between the number of neurons used in the model and the achieved 

accuracy. However, in the graph “Number of Layers x Accuracy” in the same figure, it 

can be observed that models with three layers achieved higher accuracy than models with 

one or two layers. This assertion is visually confirmed in Fig 4, where the models with 

the highest accuracy, marked in red, consist of three layers but with nearly half the number 

of neurons compared to the model with more neurons.  
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Fig 4 - Accuracy according to Number of Neurons and Number of Layers 

 

Source: Own Authorship 

 

Considering the training techniques, it is not possible to clearly define, based on 

the “Training Method x Accuracy” graph in Fig 3, a technique with superior performance 

for the study's application. Sources like  (HAYKIN, 2009) and (GÉRON, 2019) discuss 

training techniques, or optimization techniques, focusing on performance related to 

training and model classification times, without conventional correlation to the accuracy 

achieved by the model. 

Regarding the activation function, models that employed the hyperbolic tangent 

function showed better accuracy, despite having different numbers of neurons and layers, 

as can be seen in Fig 5. 
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Fig 5 - Accuracy according to Activation Function 

 

Source: Own Authorship 

 

CONCLUSION 

In the use of MLP for fault detection in photovoltaic panels, it is common to 

employ between one and three hidden layers with up to 40 neurons each. Despite the 

relatively low number of layers and neurons utilized, impressive results have been 

achieved with accuracies consistently exceeding 90%. 

Directly correlating the number of neurons with accuracy proved challenging. 

However, the influence of the number of layers used can be observed. While most models 

have a single hidden layer, the three-layer models consistently achieved higher accuracy 

compared to models with one or two layers. 

The selection of hyperparameters in neural networks has proven to be an empirical 

area, with no consolidated rule for defining these hyperparameters. Neural networks with 

lower complexity can become underfitting, while overly complex networks can lead to 

overfitting. The study demonstrates practical boundaries of hyperparameters that articles 

applying MLP have addressed for fault classification in photovoltaic panels with the aim 

of avoiding underfitting and overfitting. 

To make the process of finding the best settings for hyperparameters in a 

Multilayer Perceptron (MLP) neural network more efficient, it's important to set certain 

boundaries or limits for these hyperparameters. By doing this, you can make use of 

optimization techniques like Grid Search, Random Search, and Bayesian Optimization. 

These techniques help you explore different combinations of hyperparameters to find the 

best configuration for your MLP network. 
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Setting boundaries for hyperparameters is beneficial because it prevents you from 

having to search over an excessively wide range for each hyperparameter. This saves both 

time and computational resources, as you're focusing your search within a defined range 

that is more likely to contain optimal hyperparameter values. In essence, you're narrowing 

down the search space to areas where the best configurations are more likely to be found, 

making the optimization process more efficient and effective. 
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